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In this paper we reviewed Wu’s algorithm and introduced it as a cryptanalysis technique. This study 
reveals that when Wu’s algorithm is used for cryptanalysis it simplifies. This is true because Wu’s 
algorithm has to be applied to binary polynomials only, when used for cryptanalysis. To summarize, we 
gave a full description of Wu’s algorithm in the binary case and also a basic example of using binary Wu 
to break an s-box. 
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INTRODUCTION 
 
Cryptographic algorithms use s-boxes to introduce 
non-linearity into a method. Such an s-box can be 
represented by a set of non-linear binary polynomials. A 
non-linear s-box is difficult to reverse. If the output is 
known it is difficult to derive the input. This is true due to 
the fact that reversing an s-box is the same as solving a 
set of non-linear polynomials (finding the roots of such a 
set). Wu’s algorithm is a mechanical method to solve 
non-linear polynomial sets and can thus be used as a 
cryptanalysis technique. 

The algorithm was originally developed by J. F. Ritt in 
the late forties (See his now classic book Differential 
Algebra: Ritt (1950). Later it was independently 
rediscovered and improved by the Chinese 
mathematician Wu Wen-Tsün in the late seventies 
(Wen-Tsün, 1978, 1984, 1986). Other resources 
describing   Wu’s   algorithm   include,  Bayram  and  Celik, 
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(2002), and Kapur and Mundy (1988). The cornerstone of 
this algorithm is the generation of a Ritt-Wu characteristic 
set, which is a triangular set that is constructed from a 
polynomial set so that the characteristic set shares some 
of the properties of the original set (Gallo and Mishra, 
1990b; Ritt, 1950). The algorithm has found wide usage in 
mechanical theorem proving (Wen-Tsün, 1986; Kapur and 
Mundy, 1988) and solving polynomial sets (Bayram, 2002) 
to name a few applications. Improved variations on the 
original algorithm can be found in Gallo and Mishra 
(1990b), and Chou and Gao, (2008). The computational 
complexity of the algorithm is thoroughly analyzed in Gallo 
and Mishra (1990a, b). 

It has been speculated that the reason Wu has failed to 
make a large impact is that it has been overshadowed by 
the Gröbner base algorithm (Buchberger, 1985). A debate 
regarding the respective power of these two algorithms 
has sprung up. Experimental data is available for both 
algorithms in Buchberger (1985), Chou (1985), and Kapur 
(1986). The complexity of the Gröbner base algorithm is 
analyzed in Möller and Mora (1984). This paper however 
does not investigate which of these  two  algorithms  would 
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make a better cryptanalysis method. It only introduces 
Wu’s original algorithm (Wen-Tsün, 1986) as a 
cryptanalysis technique without the improvements of 
Gallo and Mishra (1990b), and Chou and Gao, (2008). 

Wu’s algorithm is used to solve polynomial sets in the 
decimal number system. This paper will investigate Wu’s 
algorithm in the binary case with the hope that the 
algorithm will simplify greatly so that it can be used as an 
effective non-linear attack on s-boxes. 

The paper begins by introducing multivariate 
polynomials. This is followed by a discussion of 
polynomial sets. These are then used to introduce Wu’s 
algorithm. Once Wu’s algorithm is introduced it is modified 
for the binary case. The paper ends with an example of 
how Wu can be used as a non-linear attack and a final 
conclusion discussing the future research required for 
possible successful implementation of this approach. 

 
 
MULTIVARIATE POLYNOMIALS 
 
Basic definitions 
 
Multivariate polynomials are polynomials consisting of 

more than one variable, rxxx ,,, 21 L .  Without loss of 

generality one may assume that the ordering of the above 

mentioned variables are rxxx <<< L21 . A multivariate 

polynomial f is denoted by (1) if mx  is selected as master 

variable  
 

0

1

1
IxIxIf n

mn

n

mn +++= −

− L                           (1) 

 

where },,,,,{ ,1121 rmmk xxxxxI LL +−∈ , nk ≤≤0 . kI  is a 

multivariate polynomial itself and may contain a number in 
its coefficient.  

The class of a multivariate polynomial is defined as the 
greatest subscript c of any x  contained in f and is denoted 

by )( fclassc = . The class of a constant is defined to be 

naught.  

When the master variable is equal to cx  (1) becomes  

 

0

1

1
IxIxIf n

cn

n

cn +++= −

− L                             (2) 

 

The variable cx is the leading variable and nI  is the 

leading or initial coefficient of f.  The leading variable is 

denoted by )( flvxc = , while the initial is denoted by 

)( flcI n = . 

The degree of a polynomial is the highest degree of the 
leading variable. The degree of f is denoted by n = deg( f ). 
One can also determine the degree of any variable; this is 

denoted by deg( f, ix ). 

 
 
 
 
These definitions are described in greater detail in Bayram 
et al. (2002), Wen-Tsün (1986), and Kapur and Mundy 
(1986). 
 
 
Reduction 
 
A polynomial g is said to be reduced with respect to f if the 

highest degree of cx  )]([ flv  in g (if any) is less than the 

deg(f). The above does not imply that g is of a lesser class 

than f, cx  is only the master variable of g and not 

necessarily its leading variable. If g is reduced with respect 
to f we denote it as g red f. If g is not reduced with respect 
to f we denote it as g red f. The action of reducing g with 
respect to f is known as reduction. 

Reduction is provided by the pseudo division algorithm. 
In normal polynomial mathematics any polynomial )(xg  

can be written as )()()()( xrxqxfxg +⋅= . When working 

with multivariate polynomials the above equation 
becomes 
 

rfqgI s

n +⋅=            (3) 

 

where 0
1

1 IxIxIf
n
cn

n
cn +++= −

− L with 

},,,{ 121 −∈ ck xxxI L  and 0
1

1 LxLxLg
j

cj
j

cj +++= −
− L  with 

},,,,,{ 1121 rcck xxxxxL LL +−∈ . Note that nj ≥ . The 

polynomial nI  is thus the leading coefficient of f and must 

be non-zero. Also q and r are multivariate polynomials and 
s is an integer with the following added condition 

1+−≤ jns . If the integer s is the smallest possible power 

that satisfies (3) and q as well as r was uniquely 
determined by some means then r is known as the pseudo 
remainder of g with respect to f. The pseudo remainder 
has one additional property reduced with respect to f, 

meaning deg(f, )cx  > deg(r, cx ). If jn >  then g is 

already reduced with respect to f and 0,0 == qs  are 

chosen so that gr =  and the above equation still holds. 

 
 
Pseudo division algorithm 
 

Input to the algorithm is the polynomials g and f in cx , thus 

one can write g and f as 
0LxLg

j
cj ++= L , 

0IxIf
n
cn ++= L . Output of the algorithm is the pseudo 

remainder of g with respect to f and is denoted by 

rfgprem =),( . 

Set gr = . 

 

While k = deg( nxr c ≥),  



 

 
 
 
 

fxCrIr
nk

ckn
−−= , where kC is the leading coefficient of r 

in cx .  

Return r. 
 
This algorithm is discussed in greater detail in Chou and 
Gao, (2008). 
 
 

Partial order on polynomials 
 
One can define a partial order on polynomials. The 
polynomial g has a higher rank than f if one of the following 
two cases holds: 
 

1) )()( gclassfclass < ; 

2) )()( gclassfclass =  and the deg( f ) < deg(g ).  

 

It is denoted as fg >  (g has a higher rank than f). The 

expression fg > can also be interpreted as f has a lower 

rank than g. When neither of the above conditions is met 
one says that f and g are of the same rank. This is donated 

as gf ~ . This happens when )()( gclassfclass =  and the 

deg(f) = deg(g) or when both polynomials are constants.  
One has to note here that reduction is not parallel to the 

partial order. If fg >  it does not mean that g is not 

reduced with respect to f. Reduction concentrates on a 
single variable, while the partial order concentrates on the 
entire polynomial. 
 
 
POLYNOMIAL SETS 
 
A polynomial set is defined as a collection of polynomials 
and is denoted by },,,{ 21 pfffF L= .  

 
 
Polynomial ideal 
 
Let F be a set of polynomials in variables 

rxxx ,, 21 L . Let 

iP  be the totality of linear combinations of polynomials in 

F with polynomials in K as coefficients, where K consist of 

all possible polynomials in variables rxxx ,, 21 L . Then iP  

is a polynomial ideal generated by F. 

Let iP  be a prime ideal in variables rxxx ,, 21 L . Then 

there may be some ix  such that no non-zero polynomial 

in iP  involves only ix , that is every polynomial in which ix  

appears effectively also involves some jx  with ji ≠ . If 

there exist such a ix , let us pick one of them and call it 1u . 

There may be another kx  distinct from 1u  such that no 

non-zero polynomial in iP  involves  only  1u   and  the  new 
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kx . If there exist such a kx , pick one of them and call it 

2u . Continuing, one finds a set )(,,1 rwuu w <L .  This set 

is known as the parametric set of indeterminates for iP . 

The value w is known as the dimension of iP  and is 

denoted as dim iP . More information on polynomial ideals 

can be found in Ritt (1950). 
 
 
Ascending set 
 

A polynomial set },,,{ 21 pfffF L=  is said to be an 

ascending set if either of the following two conditions hold: 
 

1) p = 1, and 01 ≠f . 

2) p > 1, )()()(0 21 pfclassfclassfclass <<<< L , and jf  

is reduced with respect to if  for each pair ij > . 

 

An ascending set is said to be contradictory if p = 1, 01 ≠f  

with 0)( 1 =fclass . It is clear from the above that p ≤  r. 

 
 
Reducing a polynomial with respect to an ascending 
set  
 

Let { }rfffF ,,, 21 K=  be an ascending set with 

0)( 1 >fclass  and g a polynomial. We define );( Fgprem  

inductively to be ),,,);,(( 121 −rr ffffgpremprem K . Let the 

answer be R. Note that );( Fgprem  means we reduce g 

with respect to F. In other words g is reduced with respect 
to all polynomials in F. This definition leads to the 
remainder equation. 
 

RfQgI
r

i

ii

r

i

s

i
i +=∑∏

== 11

          (4) 

 
which is derived in Wen-Tsün (1986). 
 
 
Partial order for ascending sets 
 
One can extend the partial order on polynomials to provide 

a partial order for ascending sets. Let ),,,( 21 pfffF K=  

and ),,( 21 sgggG K=  be ascending sets. We define 

GF <  whenever there is either a },min{ spj ≤ such that 

ii gf ~  for all i < j, but jj gf < , or p > s and ii gf ~  for all 

si ≤ . This means that GF <  if either of two cases holds: 

 

 1) When  if   and  ig   are  incomparable  up  to  a  point  j 
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 ( },min{ spj ≤ ), but jj gf < . 

2) When F is longer than G, and each ig  is incomparable 

to the corresponding if . 

 
For incomparable ascending sets we write F ~ G.  When 

GF <  we say that G has a higher rank than F or that F has 

a lower rank than G. When F ~ G we say F and G are of 
the same rank. The ascending sets will be of the same 

rank when p = s, pp gfgf ~,,~ 11 L  . Note from above 

that the larger ascending set may have the lower rank. 
 
 
Minimal ascending set 
 
A minimal ascending set is defined as any set from a 
collection of ascending sets that has the lowest rank of all 
the sets in the collection. What is meant by the lowest rank 
is that no other set in the collection may be of a lower rank 
than a minimal ascending set. There may however be 
some sets that have the same rank than a minimal 
ascending set. These sets are minimal ascending sets of 

the collection as well. Thus one can say a set iF  is a 

minimal ascending set of the collection of ascending sets 

vFF ,,1 L  if ji FF <  or ji FF ~  for all jivj ≠≤≤ ,1 . 

The formal definition of a minimal ascending set is given 
by the following lemma (Wen-Tsün, 1986). 
 
 
Lemma 1 
 

Let LL ,,, ,21 qFFF  be a sequence of ascending sets qF  

for which the rank never increases, or for any q we have 

either qq FF <+1  or qq FF ~1+ . Then there is an index 'q  

such that for any 'qq >  we have '~ qq FF . In other words, 

there is some 'q  such that any qF  for which 'qq ≥   is a 

minimal ascending set of the above sequence. 
Because any ascending collection can be written as the 

sequence described in the above lemma (due to the partial 
order for ascending sets) one can deduce that every 
ascending collection has at least one minimal ascending 
set. 

 
 
Basic set 

 
The basic set of a non-empty polynomial set F is any 
ascending subset from F that is a minimal ascending set of 
all the possible ascending subsets that can be constructed 
of F. In other words there will be no other ascending subset 
from F with a lower rank than the basic set of F.  Any 
ascending subset of F that has  the  same  rank  as  a  basic 

 
 
 
 
set of F is a basic set of F as well. Please note that a basic 
set is an ascending set by construction. So let 

},,,{ 21 vFFF L=Ω  be a set consisting of all possible 

ascending subsets of F, so that FF j ⊂  for all )1( vj ≤≤ . 

Then any iF  such that ji FF <  or ji FF ~  for all 

)1( vj ≤≤  is a basic set of F.  The main difference 

between a basic set and a minimal ascending set is the 
fact that a basic set is an ascending set one constructs 
from a single polynomial set, while a minimal ascending 
set is a set belonging to an existing collection of ascending 
sets. 
 
 
Constructing a basic set of a polynomial set 
 
The input to the algorithm is a polynomial set F. The output 
of the algorithm is B a basic set of F. This is denoted as B 
= basic_set(F). 
 

Set FF =1 , B is equal to an empty set. 

k = 1 
While (B not the basic set of F) 

Find the first polynomial f from kF  of lowest rank and add 

it to B. 

1+kF  is equal to an empty set. 

If (class( f ) = 0 and k = 1) then B is a basic set of F, 
Else 

For (i = 1, )( kFsizei ≤ ,  i++) 

If (( if  red f ) and ( ffi ≠ )) add if  to 1+kF  

end{for} 

If ( 1+kF  is empty) B is a basic set of F. 

k++ 
end {else} 
end {while} 
Return B. 
 
In simpler terms what this algorithm does is it constructs 
the longest possible ascending set of lowest rank. 
Remember there is more than one basic set, this algorithm 
uses the first polynomial of lowest rank; if you use the 
second you would get a completely different basic set. 
 
 

Characteristic set 
 
The characteristic set of a polynomial set F is a set that is 
constructed in a special manner so that this new set 
contains all the zeros (solutions) of F and is triangular in 
form. What is meant by the solutions of F is all those 
numbers that would make F = 0 true. A triangular form 
(ascending set) is an easy form to solve for instance 

},{
23

yxxyyy ++−  is easier to solve than },{
2

yxxyyxxy ++++ , 



 

 
 
 
 
because it is triangular in form, in other words direct back 
substitution is possible. A more formal definition of a 

characteristic set is as follow. Let iP  be the prime ideal 

generated by F. Then the characteristic set of F is the 

basic set of iP . 

 
 
Constructing a characteristic set from a polynomial 
set 
 
The input to the algorithm is a polynomial set F. The output 
of the algorithm is C a characteristic set of F. This is 
denoted as C = char_set(F). 
 
C is an empty set, T is an empty set. 
While (C not the characteristic set of F) 
B = basic_set(F). 
If (class(B) = 0) then C = {1} and is the characteristic set of 
F, 
Else 
T = F -  B, T is thus the difference between the sets F and 
B. Those polynomials that are in F but not in B.  

2
T  is an empty set, and R is a polynomial. 

For (i = 1, )(Tsizei ≤ ,  i++), {Forms the set of remainders 

of polynomials in T with respect to B} 

);( BtpremR i= , where it  is the i
th
 polynomial in T. 

If ( )0≠R  then add R to 
2

T .  

end{for} 

If  (
2

T  is empty) then C = B and is the characteristic set of 

F.  

Else add 
2

T  to F. 

end{else1} 
end{while} 
Return C. 
 
The following theorem from Wen-Tsün (1986) is thus 
briefly summarized. 

 
 
Ritt’s theorem also known as the Well-Ordering 
theorem 

 
There is an algorithm which permits us to get, after a 
mechanically finite number of steps, either a polynomial 
set C = {1}, or a non-contradictory ascending set 

},,{ 1 vccC L=  with initials vII ,,1 L  such that any zero of 

F is also a zero of C, and any zero of C which is not a zero 

of any of the initials iI , will also be a zero of F. The set C 

obtained in this manner is known as the characteristic set 
of F. 

The   size   of  a  characteristic  set  C  can  be  calculated 
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using Equation 5 as stated by Gallo and Mishra (1990b) 

iPnCn dim−≥≥                                                    (5) 

 
where C is the characteristic set of F, n is the size of F, and 

iP  is the polynomial ideal generated by F. 

 
 
WU’S ALGORITHM 
 
So far, we know that the roots of F are pretty much the 
roots of C if 0≠I . But how do we find those zeros of F for 

the case when I = 0? This is quite easy when one 

calculates the characteristic set of }{IF U . We 

recursively call the characteristic set algorithm to 
investigate this case. It may produce more roots, or it may 

proclaim that the set }{IF U  has no roots. Hence  

 

U UU }){()]()([)( iIFZerosIZerosCZerosFZeros −=                (6) 

 

where iI  is an initial of Cci ∈  and ∏= iII . One does not 

know how deep this recursion goes but that it must 
terminate is for certain due to the fact that the basic sets 

decrease in rank. We write )]()([ IZerosCZeros −  for the 

set of zeros of C subject to the condition that 0≠I . So the 

zeros of F are those zeros of C which are not zeros of I, 

together with the zeros of }{ iIF U . The last term captures 

those zeros that are simultaneous solutions of F and I. We 
stop pursuing a branch whenever we get that the 

Zeros( }{ iIF U ) is an empty set. Wu’s complete algorithm 

is described below. Given a set of polynomials F, return a 
set of ascending sets of solutions Z. 
 
Z is an empty set, G = F. 
While (G is non-empty) 

Pick a set of polynomials '
F from G. 

G = G - '
F , Let G be the polynomials that are in G but not 

in '
F .  

)(_
'

FsetCharC = . 

If ( C }1{≠ ) CZZ U= . 

T is an empty set. 

For (All initials iI  of C) 

If ( iI  are non-constant) Add iI  to T. 

end{for} 

If (T is not empty) TFGG UU
'= . 

end{while} 
Return Z. 
 
A complete theoretical analysis of Wu’s method can be 
found in Gallo and Mishra (1990a, b). 
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WU’S ALGORITHM IN THE BINARY CASE 
 
There are quite a few simplifications that occur when Wu’s 
algorithm is applied to binary multivariate polynomials. 
 
 
Binary multivariate polynomials 
 
A binary multivariate polynomial consists of binary 

variables rxxx ,, 21 L . These variables can assume only 

one of two values a ‘0’ or a ‘1’. Equation (2) transforms to 

(10) when the variables rxxx ,, 21 L  are binary.  

 

01
IxIf c ⊕=                                               (10) 

 

Note that plus becomes XOR and multiplication becomes 
AND. The value of  f can thus either be a ‘1’ or a ‘0’. Also 
the degree of  f is always one. All the definitions stay 
exactly the same in the binary case except for a few which 
will be highlighted below.  

The definition of reduction does simplify. A binary 
polynomial g is said to be reduced with respect to a binary 

polynomial f if cx )]([ flv  is not present in g. The above 

facts simplify the pseudo division algorithm to one single 
equation 
 

fLgIrfgbprem
11

),( ⊕==                           (7) 

 

Where g and f are binary polynomials in cx )]([ flv , 1I  is 

the initial of f and 1L  is the initial of g. Also the variable r 

denotes the binary pseudo remainder. The notation 

),( fgbprem  is used to show that the binary pseudo 

remainder is being calculated. Also remember if g is 
already reduced with respect to f then g is the pseudo 
remainder and not (7). The partial order for polynomials is 
also affected by the binary condition; and is redefined as 
follow. The binary polynomial g has a higher rank than a 

binary polynomial f if the )()( gclassfclass <  and is 

denoted by f < g. When the )()( gclassfclass =  we say g 

and f are of the same rank, and denote it by gf ~ .  

All other algorithms and definitions stay exactly the 
same except when it uses the original definitions of the 
above. Then the algorithm or definition must use the 
above instead. For instance when an algorithm or 
definition uses prem one should use bprem. Also for linear 
combinations one should use XOR and not standard 
addition and AND instead of multiplication. 
 
 
Influence on WU’s algorithm 
 
Wu’s   algorithm   itself   simplifies   as   well,   hence    Wu’s 

 
 
 
 
complete algorithm is not needed. One only needs one 
iteration of the characteristic set algorithm to obtain the 
roots of a binary polynomial set that has a unique solution. 
The reason for this is explained below. 

When the characteristic set algorithm is applied to a 
binary polynomial set one gets either one of three possible 
outcomes. 
 
1) A characteristic set of {1} is returned, showing that the 
system has no solution. 
2) A characteristic set of the following form is returned 
 

























⊕

⊕

⊕

nn ax

ax

ax

M

,

,

22

11

                                      (8) 

 
showing that the system has a unique solution. Equation 
(8) has a size that equals the size of  the original set. 

Remember ia  can be either a ‘1’ or a ‘0’. 

 
3) A characteristic set that has a smaller size than (8) is 
returned, showing that the system has more than one 
solution. 
 
From Ritt’s theorem it is clear that when a system has no 
solutions it will generate a characteristic set of {1}. 

The reason for (8) is as follows, if a binary polynomial 
set has only one unique solution then the polynomial ideal 
that is generated by such a set will be a zero dimensional 
ideal. This is so, because there is no interdependence 
between the variables in such a system. The linear 
combinations that form the polynomial ideal can eliminate 
all variables except one, without changing the roots of the 
original system when the system has a unique solution. As 
stated before, the size of a characteristic set can be 
calculated using (5). Thus because the set generates a 

zero dimensional ideal, (5) becomes nC = . 

Now because, the characteristic set is also a binary 
ascending set and must have a size that is equal to the 
original set it will be of the form stated in (8). In the case of 
(8) the unique solution can be determined directly and is 

equal to { }naaa ,,, 21 L . In this case one characteristic set 

iteration is required to compute the unique solution. 
When a system has more than one unique solution it 

does not generate a zero dimensional ideal, and therefore 
generates a characteristic set that is smaller than the 
original set. It does not do this because the linear 
combinations that form the polynomial ideal can not 
eliminate all the variables except one without changing the 
roots of the original system. This is impossible due to the 
way   a  polynomial  ideal  is  constructed;  it  preserves  the 



 

 
 
 
 
original roots (linear combinations). Thus Ritt’s theorem 
can be restated for the binary case as follow. 
 
 
Ritt’s theorem in the binary case 
 
There is an algorithm which permits us to get, after a 
mechanically finite number of steps, either a binary 
polynomial set C = {1}, or a non-contradictory binary 

ascending set },,{ 1 vccC L=  with initials that are all equal 

to 1 such that any zero of F is also a zero of C, and any 
zero of C is also a zero of F, or a non-contradictory 

ascending set },,{ 1 vccC L=  with initials vII ,,1 L  such 

that any zero of F is also a zero of C, and any zero of C 

which is not a zero of any of the initials iI , will also be a 

zero of F. The set C obtained in this manner is known as 
the binary characteristic set of F. 
 
In the remainder of the paper we will concentrate on the 
case when F has a unique solution, because this has direct 
applicability to cryptography. 
 
 
Example 
 
It is time to illustrate the use of Wu as an attack. Let us 
investigate the following set. 
 

















=⊕⊕⊕

=⊕

=⊕⊕⊕⊕

=

313223

2213

112323113

,

,

yxxxxx

yxxx

yxxxxxxxx

F             (9) 

 

Assuming that the output vector ),,( 321 yyy and the input 

vector ),,( 321 xxx of an s-box is related by (9). The 

concept is thus represented graphically as in Figure 1. 

In Figure 1 the variables 321321 ,,,,, xxxyyy  represent 

the bits of a binary number where the lowest subscript is 
the LSB, while the highest subscript represents the MSB. 

Assuming the output vector ),,( 321 yyy is known as well 

as the transformation function F. The following procedure 
can be used to calculate the input vector. If it is known that 

the output vector is equal to )0,0,1(  then (9) transforms to 

 

1

)1()()1(

1

12131211

⊕=

⋅⊕⊕⋅⊕⊕=

x

fxxxxxR
          (10) 

 
where each polynomial is equal to naught.  Set (10) was 
constructed by substituting the output vector into (9) and 
equating each polynomial to naught. Now the input vector 
is actually the root of (10). We know from  “Wu’s  algorithm 
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in the binary case” that we only require one iteration of the 
characteristic set algorithm to calculate the root of (10), 
because (10) has a unique solution. The first thing one 

needs to calculate is the basic set of 1F . The basic set is 

calculated as follow. First retrieve the first polynomial of 

lowest rank from 1F . In this case it will be 

 

 11232311311
⊕⊕⊕⊕⊕= xxxxxxxxf .  

 
Now make a separate polynomial set containing all the 

polynomials in 1F  that are already reduced with respect to 

11f .  Because in this case this new set is empty; 
11f  is the 

basic set of  1F . Thus 

 

}1{ 123231131 ⊕⊕⊕⊕⊕= xxxxxxxxB             (11) 

 

Now remove the basic set from 1F  to form 
11T . 

 









⊕⊕⊕

⊕
=

13223

213

1

,

1 xxxxx

xxx
T

                    (12) 

 

Now calculate );( 111 111
BtbpremR = using (7) and the 

section “Reducing a polynomial with respect to an 
ascending set” under “Polynomial sets”. 
 

1

)1()()1(

1

1213121 111

⊕=

⋅⊕⊕⋅⊕⊕=

x

fxxxxxR
          (13) 

 

Because 1B  consists of only one polynomial there is no 

recursion. Now because 
111R  is not equal to naught it gets 

added to 
21T . Now we need to calculate 

 

1);(
1221111 221

⊕⊕⊕== xxxxBtbpremR          (14) 

 

which is also not equal to naught and is thus added to 
21T . 

Now 
21T  is equal to 

 









⊕⊕⊕

⊕
=

1

,1

1221

1

12 xxxx

x
T

                         (15) 

 

Because 
21T  is not empty it gets added to 1F  to form 2F  

which is now equal to 
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Figure 1. Graphical representation of (9). 
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⊕

=

13223

213

12323113

1221

1

2
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,1

,1

,1

xxxxx

xxx

xxxxxxxx

xxxx

x

F              (16) 

 

Next we need to recalculate the basic set of 2F . In this 

case it is equal to }1{ 12 ⊕= xB . Also 
12T  is recalculated 

by removing 2B  from 2F . Applying the same procedure 

as above one can calculate 
22T . For convenience sake 

let’s define a new syntax. 
 

























=

);(

),;(

),;(

};{ 2

1

1

nn

nn

nn

nn

Btbprem

Btbprem

Btbprem

BTbprem

r

M
                  (17) 

 

Please note that if );( nn Btbprem
i

is equal to naught it does 

not get added to 
2nT . 

Using (17) we can calculate
22T  

 

( )

















⊕⊕⊕

⊕

⊕

=

=

1

,

,

);(_

2332

23

232

222 12

xxxx

xx

xxx

BTbpremzerononT

                       (18) 

 

Now 3F  is equal to U 2223 TFF = . 

 
 
 
 
 

 
 
 
 

Continuing as before one calculates 
23T . Now 

U 2334 TFF = . 
















⊕

⊕

⊕

=

1

1

1

3

2

1

5

x

x

x

B  . We calculate 
15T with 

5551
BFT −=  and then we calculate the set 

25T  

wit ( ));(_ 555 12
BTbpremzerononT = . This leads to {}

25 =T . 

Now because 
25T is an empty set we know 5B is the 

characteristic set F.  The input vector can now be 
determined directly and is equal to (1,1,1). 
 
 
CONCLUSION 
 
What is clear from this article is the fact that Wu’s original 
algorithm does work and can be used as a cryptanalysis 
method.  
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