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Abstract

This paper presents the P1/CR immersed finite element (IFE) method to solve planar elasticity
interface problem. By adding some stabilisation terms on the edges of interface elements, the
stability of the discrete formulation and a priori error estimate in an energy norm are presented.
Finally, numerical examples are given to confirm our theoretical results.
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1 Introduction

Linear elasticity equation plays an important role in solid mechanics [1, 2]. In particular, problems
involving composite materials are getting more attention from both engineers and mathematicians
in recent years, for example, the atomic interactions [3] and the crystalline materials problems [4].

This article considers a planar object made of two elastic materials and separated by a curve Γ in
the bounded polygonal domain Ω ⊆ R2, as illustrated in Fig. 1. The Lamé coefficients µ and λ are
piecewise positive constants
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(µ, λ) =

{
(µ−, λ−), in Ω−,
(µ+, λ+), in Ω+,

which are defined by the Poisson ratio ν and the Young’s module E as

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
.

The model problem is to find the displacement variable u such that

−∇ · σ(u) = f , in Ω− ∪ Ω+, (1.1)

u = 0, on ∂Ω, (1.2)

where the symmetric stress tensor

σ(u) = 2µϵ(u) + λtr(ϵ(u))I,

ϵ(u) = 1
2

(
∇u+ (∇u)t

)
is the strain tensor with the trace being tr(ϵ) = Σ2

i=1ϵii, I is the identity
matrix, and f ∈ (L2(Ω))2 is the external force. On the interface Γ, we assume that u satisfies the
following interface conditions

[u] = 0, on Γ, (1.3)

[σ(u)n] = 0, on Γ, (1.4)

where n = (n1, n2)
t is the unit outer normal vector of the interface pointing from Ω+ to Ω−.

..
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Fig. 1. A separated domain Ω.

In the last decades, a large number of numerical methods have been proposed for solving composite
material problems, for example, the matched interface and boundary method, the immersed interface
method, the Petrov-Galerkin finite element interface method. At the beginning, the interface-fitted
mesh methods are widely used [5]. However, letting the mesh conform to the interface requires
remeshing as the interface evolves with time, and leads to complications when topological changes
occur such as coalescence or breakup. Therefore, it is difficult and time consuming to generate an
interface-fitted mesh. Consequently, the unfitted-mesh methods are put forward and developed, for
instance, the extended finite element method and the immersed finite element (IFE) method.

The extended finite element method (XFEM) has been successfully applied to many engineering
problems, for instance, crack-propagation, material modeling, and solid-fluid interactions. It is
originally introduced in [6] to solve elastic crack problems. The basis functions allow the extended
finite element spaces to approximate the solutions of interface problems with an optimal convergence
rate. A combination of Nitsche’s method and the XFEM (Nitsche-XFEM) is proposed in [7] and
developed by many authors in [8, 9, 10]. Since the basis functions are discontinuous on the interface,
penalty terms are always needed to ensure the consistency for the finite element formulation.
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This article focuses on the IFE method, which have been developed in a series of significant
interface problems. This method was first proposed by Li in [11] and applied by many authors
in [12, 13, 14, 15, 16, 17]. In [18], a partially penalized IFE method is applied to the second order
elliptic equations and the optimal finite element error estimate is obtained in 2D case. In [19] and
[20], two kinds of IFE methods are developed for the planar elasticity systems, which are based on
rotated Q1 elements and P1/CR IFE elements respectively. But both of them only figure out the
unislovent property of the IFE space, there is no theoretical result for the approximation capability
or any other further analysis. In [21], we present a P1/CR IFE method with midpoint values on
edges as degrees of freedom for CR elements and prove the approximation capability of our method.
Furthermore, we give the error estimate of the IFE method in an energy norm.

In this article, to further perfect the P1/CR IFE method, we use the integration average values
on edges as degrees of freedom for CR elements to solve the planar elasticity interface problems.
We give the proof of the approximation capability in L2 norm and H1 semi-norm. Because of the
negative impacts from the discontinuity over edges, some penalty terms are added to enhance the
stability so that the optimal error estimate of the new method has also been demonstrated.

The rest of this paper is organized as follow. Some notion and the partially penalized P1/CR IFE
method are given in next section. In Section 3, we present the important trace inequality. The error
estimate of the IFE method is derived in an energy norm in Section 4. Finally, some numerical
examples are given.

2 The P1/CR IFE Method

Let Th be a regular Cartesian triangular mesh of Ω. Let T i
h = {T ∈ Th; T ∩Γ ̸= ∅} and T n

h = Th/T i
h

represent the set of interface elements and the set of non-interface elements, respectively. Define
the set of all sides εh = {e ⊆ ∂T ; T ∈ Th}, the set of the non-cut edges εnh = {e ⊆ ∂T ; e ∩ Γ =
∅, T ∈ Th}, the set of the cut edges εih = {e ⊆ ∂T ; e ∩ Γ ̸= ∅, T ∈ T i

h}. We assume that interface
elements satisfy the following assumptions when the mesh size h is small enough.

(H1) The interface Γ can’t intersect the boundary of any element at more than two points unless
one edge is part of Γ.

(H2) If Γ intersects the boundary of a element at two points, these intersection points must be on
different edges of this element.

For every interior edge e ∈ εh, we assume that two elements Te,1 and Te,2 share the common edge
e. For a function u, define

{u}e =
1

2

(
(u|Te,1)|e + (u|Te,2)

)
|e, [u]e = (u|Te,1)|e − (u|Te,2)|e.

For simplicity’s sake, we will drop the subscript e from these notations. Denote the function space

(H̃2(Ω))2 =
{
u ∈ (H1(Ω))2 : u|Ωs ∈ (H2(Ωs))2, s = +, −

}
,

which is equipped with the norm ∥u∥H̃2(Ω), where

∥u∥2
H̃2(Ω)

= ∥u∥2H1(Ω) + ∥u∥2H2(Ω−) + ∥u∥2H2(Ω+) .

Multiplying v ∈ (H1
0 (Ω))

2 to the both sides of (1.1) and applying Green??s formula in each domain
Ωs (s = +,−), we deduce that∫

Ωs

σ(u) : ϵ(v)dx−
∫
Ωs

σ(u)n · vds =

∫
Ωs

f · vdx.

3



Liu; JAMCS, 34(6): 1-16, 2019; Article no.JAMCS.54028

Summing over s = +,−, we obtain the following weak form: find u ∈ V such that

a(u,v) = (f ,v), ∀v ∈ (H1
0 (Ω))

2, (2.1)

where

V =
{
ω ∈ (H1(Ω))2

∣∣ ω|∂Ω = g
}
,

a(u,v) =

∫
Ω

σ(u) : ϵ(v)dx,

and

(f ,v) =

∫
Ω

f · vdx.

Now, we give the P1/CR IFE method, which has been proposed in [20]. For completeness, we
descript it simply.

In the non-interface element T , we apply the standard P1/CR finite element space Sn
h (T ) =

Span{ψj,T : j = 1, 2, · · ·, 6}. The local basis functions are chosen to satisfy the following conditions

ψj,T (Ai) =

(
δi,j
0

)
, j = 1, 2, 3; (2.2)

and
1

|ei|

∫
ei

ψj,T ds =

(
0

δj−3,i

)
, j = 4, 5, 6, (2.3)

where Ai and ei (i=1, 2, 3) are the vertices and the edges of T respectively, and δij is the Kronecker
symbol.

For the interface element T , let D = (xD, yD), E = (xE , yE) be the intersections of the interface
with T , the line segment DE separates element into two subelements T+ and T−. We use DE
to approximate the curve D̃E = Γ ∩ T so that the interface is perturbed by an O(h2) term.
We only describe the basis functions on the reference interface element T̂ =△ Â1Â2Â3, where
Â1 = (0, 0), Â2 = (1, 0), Â3 = (0, 1).

Suppose that D̂ = (d̂, 0) and Ê = (0, ê), 0 < d̂, ê < 1. The piecewise linear P1/CR IFE function on
T̂ is

ϕ̂j =


ϕ̂1,j =

(
ϕ̂+
1,j

ϕ̂−
1,j

)
=

(
a+
1 + b+1 x̂+ c+1 ŷ

a−
1 + b−1 x̂+ c−1 ŷ

)
if (x̂, ŷ) ∈ T̂+,

if (x̂, ŷ) ∈ T̂−,

ϕ̂2,j =

(
ϕ̂+
2,j

ϕ̂−
2,j

)
=

(
a+
2 + b+2 x̂+ c+2 ŷ

a−
2 + b−2 x̂+ c−2 ŷ

)
if (x̂, ŷ) ∈ T̂+,

if (x̂, ŷ) ∈ T̂−,

(2.4)

where, as
i , b

s
i , c

s
i (i = 1, 2 and s = +,−) are undetermined coefficients. We can determine the basis

function ϕ̂j (j = 1, 2, · · ·, 6) by the following conditions, the values at the vertices

ϕ̂1,j(Âi) = δij , i = 1, 2, 3, (2.5)

the integral average values at the edges of T̂

1

|êi|

∫
êi

ϕ̂2,jds = δi,j−3, i = 1, 2, 3, (2.6)

the continuity of displacement at the intersection points (i = 1, 2)

ϕ̂+
i,j(D̂) = ϕ̂−

i,j(D̂), ϕ̂+
i,j(Ê) = ϕ̂−

i,j(Ê), (2.7)
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the traction continuity along the interface
[
(λ+ 2µ)

∂ϕ̂1,j

∂x
n̄1 + λ

∂ϕ̂2,j

∂y
n̄1 + µ

(
∂ϕ̂1,j

∂y
+

∂ϕ̂2,j

∂x

)
n̄2

] ∣∣∣
D̂Ê

= 0,

[
µ
(

∂ϕ̂1,j

∂y
+

∂ϕ̂2,j

∂x

)
n̄1 + λ

∂ϕ̂1,j

∂x
n̄2 + (λ+ 2µ)

∂ϕ̂2,j

∂y
n̄2

] ∣∣∣
D̂Ê

= 0,

(2.8)

where n̄ = (n̄1, n̄2) is the unit outer normal to the segment DE.

The unisolvent property of this method has been proved in [20]. Define the local basis functions ϕj

on the element T as ϕj,T , the local P1/CR IFE space Si
h(T ) is given by

Si
h(T ) = Span{ϕj,T : j = 1, 2, · · ·, 6}.

The global P1/CR IFE space can be expressed as

Sh(Ω) =
{
vh = (v1h, v2h)

t ∈ (L2(Ω))2 : vh|T ∈ Sα
h (T ), α = i, n, ∀T ∈ Th;

v1h|T1(Aj) = v1h|T2(Aj), j = 1, 2, and

∫
A1A2

v2h|T1ds =

∫
A1A2

v2h|T2ds,

∀T1 ∩ T2 = A1A2

}
.

Define the energy norm

∥vh∥h =

∑
T∈Th

(
σ(vh), ϵ(vh)

)
T
+
∑
e∈εi

h

h−1(µ+ λ)([vh], [vh])e

 1
2

. (2.9)

The discrete problem for the planar elasticity interface problem reads as: find uh ∈ Sh(Ω) such
that

ah(uh,vh) = (f ,vh), ∀vh ∈ Sh,0(Ω), (2.10)

where

Sh,0(Ω) =
{
vh = (v1,h, v2,h)

t ∈ Sh(Ω), if ∂T ∩ ∂Ω = A1A2, v1,h|(Ai) = g1(Ai), i = 1, 2,

and

∫
A1A2

v2,hds =

∫
A1A2

v2,hds = 0, T ∈ Th

}
,

ah(uh,vh) =
∑
T∈Th

(
σ(uh), ϵ(vh)

)
T
−
∑
e∈εi

h

(
{σ(uh) · n}, [vh]

)
e

−
∑
e∈εi

h

(
{σ(vh) · n}, [uh]

)
e
+
∑
e∈εi

h

h−1(µ+ λ)([uh], [vh])e,

and

(f ,vh) =

∫
Ω

f · vhdx.

3 Bounds for the Interpolation Error

For any interface triangle T ∈ Th, let

(H̃2(T ))2 =
{
u ∈ (H1(T ))2, u|Ts ∈ (H2(T s))2, s = +,−, [σ(u)n] = 0 on Γ ∩ T

}
.

By the Theorem 4.10 in [21], the following lemma holds.

5
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Lemma 3.1. For any u ∈ (H̃2(Ω))2, there exists constants C > 0 such that∥∥Iph,Tu− u
∥∥
0,T

+ h
∣∣Iph,Tu− u

∣∣
1,T

≤ Ch2 ∥u∥H̃2(T ) , (3.1)

∥Iphu− u∥
0,Ω

+ h |Iphu− u|
1,Ω

≤ Ch2 ∥u∥H̃2(Ω) , (3.2)

where Iph,T and Iph are the corresponding local IFE and global IFE interpolation operators in [21],
respectively.

Define a local interpolation operator Ih,T : (H̃2(T ))2 → Sh(T ) as

Ih,Tu =

{ ∑6
j=1 cjψj,T , if T is a non-interface element,∑6
j=1 cjϕj,T , if T is an interface element,

where

ci = u1(Ai), i = 1, 2, 3; cj =
1

|ej−3|

∫
ej−3

u2ds, j = 4, 5, 6.

The global IFE interpolation operator Ih : (H̃2(Ω))2 → Sh(Ω) is denoted by

Ihu|T = Ih,Tu, ∀T ∈ Th.

At first, we give an error bound for IFE basis function ϕi,T .

Lemma 3.2. There exists a constant C > 0 such that

∥ϕi,T ∥0,T + h |ϕi,T |1,T ≤ Ch, i = 1, · · · , 6, ∀T ∈ T i
h . (3.3)

Proof. According to Theorem 2.4 in [?] and Theorem 3.2 in [13], the following estimate holds

∥ϕi,T ∥20,T =

∫
T

ϕ2
i,T (x, y)dxdy ≤ ∥ϕi,T ∥20,∞,T

∫
T

1dxdy ≤ Ch2. (3.4)

Similarly,

|ϕi,T |21,T =

∫
T

∇ϕi,T (x, y) · ∇ϕi,T (x, y)dxdy ≤ |ϕi,T |21,∞,T

∫
T

1dxdy ≤ C. (3.5)

Combining with (3.4) and (3.5), the desired result is obtained.

Then we estimate the interpolation error u− Ih,Tu.

Theorem 3.3. There exists a constant C > 0 such that

∥Ih,Tu− u∥0,T + h |Ih,Tu− u|1,T ≤ Ch2∥u∥2,T , ∀u ∈ (H̃2(T ))2, (3.6)

where T ∈ T i
h is an arbitrary interface element.

Proof. By triangular inequality,

|Ih,Tu− u|k,T ≤ |Ih,Tu− Iph,Tu|k,T + |Iph,Tu− u|k,T , k = 0, 1, (3.7)

where the notation | · |0,T means the L2 norm on T . The estimate of the term |Iph,Tu − u|k,T can
be obtained by Lemma 3.1. Hence, we only need to bound |Ih,Tu− Iph,Tu|k,T . Let

ūi(X) =
1

|ei|

∫
ei

u(X)ds, i = 1, 2, 3,

6
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where ei (i=1, 2, 3) is the edge of T . Then

Ih,Tu(X)− Iph,Tu(X)

=

3∑
i=1

u(Ai)(ϕi(X)− ϕp
i (X)) +

6∑
i=4

ϕi−3(X)ūi−3(X)−
6∑

i=4

ϕp
i (X)u(Mi−3)

=

3∑
i=1

u(Ai)(ϕi(X)− ϕp
i (X)) +

6∑
i=4

ūi−3(X) (ϕi(X)− ϕp
i (X))

+

6∑
i=4

ϕp
i (X) (ūi−3(X)− u(Mi−3)) , (3.8)

where Mj (j = 1, 2, 3) is the midpoint of T and ϕp
i (X) (i = 1, · · · , 6) is the corresponding basis

function on T ∈ T i
h in [21]. We note that

ϕ1 = ϕp
1 = (a−

1 , 0)t, ϕ2 = ϕp
2 = (a+

1 + b+1 , 0)t, ϕ3 = ϕp
3 = (a+

1 + c+1 , 0)t, (3.9)

and

ϕ4 = (0, a+
2 +

1

2
b+2 )

t, ϕp
4 = (0, a−

2 d+
1

2
b−2 d

2 + a+
2 (1− d) +

1

2
b+2 (1− d2))t, (3.10)

ϕ5 = (0, a+
2 +

1

2
b+2 +

1

2
c+2 )

t, ϕp
5 = (0, a+

2 +
1

2
b+2 +

1

2
c+2 )

t, (3.11)

ϕ6 = (0, a−
2 +

1

2
c−2 )

t, ϕp
6 = (0, a−

2 e+
1

2
c−2 e

2 + a+
2 (1− e) +

1

2
c+2 (1− e2))t. (3.12)

Inserting the expressions (3.9)-(3.12) into (3.8) and integrating on T , we obtain

∥Ih,Tu(X)− Iph,Tu(X)∥k,T

=

∥∥∥∥∥
6∑

i=4

[ūi−3(X) (ϕi(X)− ϕp
i (X)) + (ūi−3(X)− u(Mi−3))ϕ

p
i (X)]

∥∥∥∥∥
k,T

= ∥I1 + I2∥k,T .

Moreover, by Cacuchy-Schwarz inequality and Lemma 3.2,

∥I1∥k,T ≤
6∑

i=4

1

|ei−3|1/2
∥u∥0,ei−3∥ϕi(X)− ϕp

i (X)∥k,T

≤ Ch1−k
6∑

i=4

1

|ei−3|1/2
(h−1/2∥u∥0,T + h1/2|u|1,T )

≤ C(h−k∥u∥0,T + h1−k|u|1,T ). (3.13)

According to the Taylor expansion and Lemma 3.2 in [21], we deduce that

∥I2∥k,T ≤ C

3∑
i=1

1

|ei|

∫
ei

|∇u(X)(X −Mi)|ds

≤ Ch
3∑

i=1

1

|ei|1/2
∥∇u(X)∥0,ei

≤ Ch

3∑
i=1

1

|ei|1/2
(h−1/2∥∇u∥0,T + h1/2|∇u|1,T )

≤ C(∥u∥1,T + h|u|2,T ). (3.14)

7
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Combining (3.13) with (3.14),

|Ih,Tu− Iph,Tu|k,T ≤ C(h−kh2∥u∥2,T + h1−kh∥u∥2,T ) ≤ Ch2−k∥u∥2,T . (3.15)

The proof is completed.

Summing over all the elements, the following estimate holds.

Theorem 3.4. There exists a constant C such that

∥Ih,Tu− u∥0,Ω + h|Ih,Tu− u|1,Ω ≤ Ch2∥u∥H̃2(Ω), ∀u ∈ (H̃2(Ω))2. (3.16)

At last, we give the estimate of interpolation error in the energy norm.

Theorem 3.5. There exists a constant C > 0, such that

∥u− Ihu∥h ≤ Ch∥u∥H̃2(Ω), ∀u ∈ (H̃2(Ω))2. (3.17)

Proof. Taking (2.9) into consideration, we get

∥u− Ihu∥2h =
∑
T∈Th

(
σ(u− Ihu), ϵ(u− Ihu)

)
T

+
∑
e∈εi

h

h−1(µ+ λ)([u− Ihu], [u− Ihu])e, (3.18)

According to Theorem 3.4,∑
T∈Th

(
σ(u− Ihu), ϵ(u− Ihu)

)
T
≤ Ch2∥u∥2

H̃2(Ω)
. (3.19)

By the standard trace inequality, the last term in (3.18) can be deduced that

∥[u− Ihu]∥20,e ≤ (∥(u− Ihu)|T1∥0,e + ∥(u− Ihu)|T2∥0,e)
2

≤
2∑

i=1

C|e||Ti|−1(∥(u− Ihu)∥0,Ti + h∥∇(u− Ihu)∥0,Ti)
2

≤
2∑

i=1

C|e|(h∥u∥H̃2(Ti)
)2. (3.20)

Combining (3.20) with (3.18) and (3.19), the desired result is obtained.

4 The Error Estimates

We start by giving the trace inequality of the IFE functions in Si
h(T ) for T ∈ T i

h . By the similar
techniques of Lemma 5.1 and Lemma 5.2 in [21], we have the following lemmas.

Lemma 4.1. For any IFE function v ∈ Si
h(T ) defined as (2.4), there exists a constant C such that

1

C
∥(b+1 , c

+
1 , b

+
2 , c

+
2 )∥ ≤ ∥(b−1 , c

−
1 , b

−
2 , c

−
2 )∥ ≤ C∥(b+1 , c

+
1 , b

+
2 , c

+
2 )∥, (4.1)

where ∥ · ∥ is a Euclidean norm.

8
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Lemma 4.2. For an arbitrary IFE function v, there exists a constant C such that

∥µϵ(v) · n∥0,e ≤ Ch1/2|T |1/2∥µϵ(v)∥0,T , (4.2)

∥λ(∇ · v)I · n∥0,e ≤ Ch1/2|T |1/2∥µϵ(v)∥0,T , (4.3)

where T ∈ T i
h is an interface element.

Now, we have the following trace inequality.

Lemma 4.3. There exists a constant C such that the following inequality holds∑
e∈εi

h

(h{n · σ(v)}, {n · ϵ(v)})e ≤ C
∑

T∈T i
h

(σ(v), ϵ(v))T , ∀v ∈ Sh(Ω). (4.4)

Proof. For any interface edge e = T1 ∩ T2, we first note that

(hn · σ(v),n · ϵ(v))e = h (n · (2µϵ(v) + λ(∇ · v)I),n · ϵ(v))e
= h∥λ(∇ · v)I · n∥20,e + 2h∥µϵ(v) · n∥20,e. (4.5)

Combining (4.5) with (4.2) and (4.3),

(h{n · σ(v)}, {n · ϵ(v)})e

≤ 1

2

(
(hn · σ(v)|T1 ,n · ϵ(v)|T1)e + (hn · σ(v)|T2 ,n · ϵ(v)|T2)e

)
≤ C

(
∥µϵ(v) · n∥20,T1

+ ∥µϵ(v) · n∥20,T2

)
≤ C ((σ(v), ϵ(v))T1 + (σ(v), ϵ(v))T2) .

Summing over all edges e ∈ εih, the proof is completed.

Now we prove the coercivity of the bilinear form ah(uh,vh) in the IFE space.

Theorem 4.4. There exists a constant κ > 0 such that

κ∥vh∥2h ≤ ah(vh,vh) ∀vh ∈ Sh,0(Ω). (4.6)

Proof. Take consideration of (1.1), we deduce that

ϵ =
1

2µ
(σ − λ

2µ+ 2λ
trσI) =

1

2µ
σD +

1

4(µ+ λ)
trσI,

where σD = σ − (trσI)/2. Furthermore,

σ : ϵ =
1

2µ
σD : σD +

1

4(µ+ λ)
(trσ)2,

σ : σ = σD : σD +
1

2
(trσ)2.

Thus σ : σ = 2(µ+ λ)σ : ϵ, moreover,

1

2

∥∥∥∥ 1√
µ+ λ

n · σ(vh)
∥∥∥∥2
0,e

≤ (n · σ(vh),n · ϵ(vh))e. (4.7)

9
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For each e ∈ εih, by using (4.7) and Cauchy-Schwarz inequality, there exists a constant δ > 0 such
that

2(n · σ(vh), [vh])e ≤ 2∥n · σ(vh)∥0,e∥[vh]∥0,e

≤ δh

∥∥∥∥ 1√
µ+ λ

n · σ(vh)
∥∥∥∥2
0,e

+
4

δh

∥∥∥√µ+ λ[vh]
∥∥∥2
0,e

≤ 2δh (n · σ(vh),n · ϵ(vh))e +
4

δh

∥∥∥√µ+ λ[vh]
∥∥∥2
0,e

. (4.8)

Combining (4.8) with Lemma 4.3, we obtain

2
∑
e∈εi

h

({n · σ(vh)}, [vh])e

≤
∑
e∈εi

h

2δh (n · σ(vh),n · ϵ(vh))e +
∑
e∈εi

h

4

δh

∥∥∥√µ+ λ[vh]
∥∥∥2
0,e

≤
∑

T∈T i
h

Cδ (σ(vh), ϵ(vh))e +
∑
e∈εi

h

4

δh
((µ+ λ)[vh], [vh])e.

Finally,

ah(vh,vh) =
∑
T∈Th

(
σ(vh), ϵ(vh)

)
T
− 2

∑
e∈εi

h

(
{σ(vh) · n}, [vh]

)
e

+
∑
e∈εi

h

h−1((µ+ λ)[vh], [vh])e

≥
∑
T∈Th

(
σ(vh), ϵ(vh)

)
T
− 2

∑
T∈T i

h

Cδ (σ(vh), ϵ(vh))e

− 2
∑
e∈εi

h

4

δh
((µ+ λ)[vh], [vh])e +

∑
e∈εi

h

h−1((µ+ λ)[vh], [vh])e

Therefore, there exists a κ such that ah(vh,vh) ≥ κ∥vh∥2h with a proper δ.

Theorem 4.5. Let u ∈ (H̃2(Ω))2 and uh ∈ Sh(Ω) are the solutions of (2.1) and (2.10), respectively.
Then there exists a constant C such that

∥u− uh∥h ≤ Ch∥u∥H̃2(Ω). (4.9)

Proof. By the second Strang lemma, we note that

∥u− uh∥h ≤ C

(
inf

∀vh∈Sh,0(Ω)
∥u− vh∥h + sup

∀wh∈Sh,0(Ω)

|ah(u,wh)− (f ,wh)|
∥wh∥h

)
. (4.10)

By the Cauchy-Schwarz inequality and the standard trace theorem, the last term in (4.10) can be
deduced that

|ah(u,wh)− (f ,wh)| =
∣∣∣ ∑
e∈εn

h

({n · σ(u)}, [wh])e

∣∣∣
≤ C

∣∣∣ ∑
e∈εn

h

(n · σ(u)− n · σ(u), [wh])e

∣∣∣
≤ Ch∥u∥H̃2(Ω)∥wh∥h. (4.11)

10
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Furthermore, by Theorem 3.5,

inf
∀vh∈Sh,0(Ω)

∥u− vh∥h ≤ Ch∥u∥H̃2(Ω). (4.12)

Combining (4.10) with (4.11) and (4.12), the proof is completed.

5 Numerical Examples

In this section, some numerical examples are given to show the performance of our partially
penalized P1/CR IFE method. Let Ω = (−1, 1) × (−1, 1) be the solution domain. We denote
the approximation error of the IFE interpolation by u− Ihu and the IFE solution error by u−uh,
which are measured in L2 and the energy norm.

Example 1. This elasticity interface problem that we test has a circular interface Γ with radius
r0 = π

8
. The domain Ω is divided into two sub-domains

Ω+ = {(x, y) : x2 + y2 > r20}, Ω− = {(x, y) : x2 + y2 < r20}.

The exact solution is

u(x, y) =

(
u1 (x, y)
u2 (x, y)

)
=



(
u−
1 (x, y)

u−
2 (x, y)

)
=

(
1

λ− rα1

1
λ− rα2

)
in Ω−,(

u+
1 (x, y)

u+
2 (x, y)

)
=

(
1

λ+ rα1 +
(

1
λ− − 1

λ+

)
rα1
0

1
λ+ rα2 +

(
1

λ− − 1
λ+

)
rα2
0

)
in Ω+,

where α1 = 5, α2 = 7 and r =
√

x2 + y2.

Table 1. The interpolation errors and the IFE solution errors with λ+ = 5, λ− = 1,
µ+ = 10, µ− = 2, ν+ = ν− = 1/6.

1
h

∥u− Ihu∥L2 order ∥u− Ihu∥h order

8 6.48e-002 1.36e-000

16 1.66e-002 1.967 6.99e-001 0.961

32 4.17e-003 1.991 3.53e-001 0.994

64 1.05e-003 1.998 1.77e-001 0.998

128 2.61e-004 1.999 8.87e-002 0.999
1
h

∥u− uh∥L2 order ∥u− uh∥h order

8 8.97e-002 1.66e-000

16 2.41e-002 1.893 8.74e-001 0.931

32 6.24e-003 1.951 4.45e-001 0.979

64 1.58e-003 1.981 2.24e-001 0.994

128 3.97e-004 1.994 1.12e-001 0.997

We consider three different coefficient configurations in the following tables. The first one is small
jump in the Lamé parameters, (λ+, λ−) = (5, 1), (µ+, µ−) = (10, 2). The second one is moderate
jump case, (λ+, λ−) = (100, 1), (µ+, µ−) = (200, 2). In the two cases, the Poisson ratios in two
sub-domains are ν± = 1

6
so that the material is compressible. The IFE interpolation error and the

IFE solution error are optimal in L2 norm and the energy norm.

11
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In Table 3, let (λ+, λ−) = (20000, 10000), (µ+, µ−) = (20, 10) and the Poisson ratios are ν+ =
ν− ≈ 0.4995, which is corresponding to nearly incompressible case. The IFE interpolation error
and the IFE solution error are also optimal. Moreover, we can observe that no locking phenomenon
happens although the material is nearly incompressible.

Table 2. The interpolation errors and the IFE solution errors with λ+ = 100, λ− = 1,
µ+ = 200, µ− = 2, ν+ = ν− = 1/6.

1
h

∥u− Ihu∥L2 order ∥u− Ihu∥h order

8 3.24e-001 6.67e-000

16 8.29e-002 1.965 3.43e-000 0.960

32 2.08e-002 1.991 1.73e-000 0.992

64 5.22e-003 1.998 8.66e-001 0.999

128 1.31e-003 1.999 4.34e-001 1.000
1
h

∥u− uh∥L2 order ∥u− uh∥h order

8 4.40e-001 8.16e-000

16 1.19e-001 1.887 4.26e-000 0.938

32 3.08e-002 1.950 2.17e-000 0.976

64 7.81e-003 1.980 1.09e-000 0.993

128 1.96e-003 1.993 5.47e-001 0.998

Table 3. The interpolation errors and the IFE solution errors with λ+ = 20000,
λ− = 10000, µ+ = 20, µ− = 10, ν+ = ν− ≈ 0.4995.

1
h

∥u− Ihu∥L2 order ∥u− Ihu∥h order

8 1.62e-005 3.28e-004

16 4.15e-006 1.966 1.68e-004 0.970

32 1.04e-006 1.991 8.46e-005 0.992

64 2.61e-007 1.998 4.24e-005 0.999

128 6.53e-008 1.999 2.13e-006 0.999
1
h

∥u− uh∥L2 order ∥u− uh∥h order

8 6.35e-003 9.84e-002

16 2.02e-003 1.652 5.45e-002 0.857

32 5.63e-004 1.845 2.84e-002 0.945

64 1.47e-004 1.934 1.45e-002 0.978

128 3.75e-005 1.975 7.30e-003 0.990

Example 2. The interface curve Γ is a vertical straight line x = x0 that separates the solution
domain Ω into sub-domains

Ω+ = {(x, y)t : x > x0} Ω− = {(x, y)t : x < x0}.

The exact solution is given by

u (x, y)) =

(
u1 (x, y)
u2 (x, y)

)
=



(
u−
1 (x, y)

u−
2 (x, y)

)
=

(
1

λ−+2µ− (x− x0) cos (2xy)
1

µ− (x− x0) cos (2xy)

)
in Ω−,(

u+
1 (x, y)

u+
2 (x, y)

)
=

(
1

λ++2µ+ (x− x0) cos ((x+ x0)y)
1

µ+ (x− x0) cos ((x+ x0)y)

)
in Ω+.

12
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Table 4. The interpolation errors and the IFE solution errors with x0 = 0 and
x0 = π

200
. λ+ = 2, λ− = 1, µ+ = 3, µ− = 2 and then ν+ = 1/5, ν− = 1/6.

Interface 1
h

∥u− Ihu∥L2 order ∥u− Ihu∥h order

16 2.16e-003 9.76e-001
32 5.44e-004 1.997 4.90e-002 0.997

x0 = 0 64 1.36e-004 1.999 2.45e-002 0.999
128 3.40e-005 2.000 1.23e-002 1.000

16 2.19e-003 1.00e-001
32 5.51e-004 1.995 5.04e-002 0.997

x0 = π
200

64 1.38e-004 1.999 2.53e-002 0.999
128 3.44e-005 2.000 1.27e-002 1.000

Interface 1
h

∥u− uh∥L2 order ∥u− uh∥h order

16 3.37e-003 1.32e-001
32 8.61e-004 1.984 6.68e-002 0.990

x0 = 0 64 2.16e-004 1.992 3.36e-002 0.997
128 5.42e-005 1.998 1.69e-002 0.999

16 3.38e-003 1.32e-001
32 8.70e-004 1.964 6.71e-002 0.981

x0 = π
200

64 2.21e-004 1.981 3.37e-002 0.996
128 5.49e-005 2.006 1.69e-002 1.000

Table 5. The interpolation errors and the IFE solution errors with x0 = 1− π
300

,
λ+ = 2, λ− = 1, µ+ = 3, µ− = 2, ν+ = 0.2, ν− = 1/6.

1
h

∥u− Ihu∥L2 order ∥u− Ihu∥h order

8 2.74e-003 7.41e-002

16 6.93e-004 1.986 3.73e-002 0.991

32 1.74e-004 1.998 1.87e-002 0.997

64 4.34e-005 2.000 9.37e-003 0.999

128 1.09e-005 1.990 4.70e-003 0.998
1
h

∥u− uh∥L2 order ∥u− uh∥h order

8 5.23e-003 1.09e-001

16 1.33e-003 1.981 5.48e-002 0.992

32 3.33e-004 1.992 2.75e-002 0.996

64 8.37e-005 1.994 1.38e-002 0.999

128 2.10e-005 1.997 6.94e-003 0.998

In Table 4, let (λ+, λ−) = (2, 1), (µ+, µ−) = (3, 2) and (ν+, ν−) = ( 1
5
, 1
6
). The interface location

varies from x0 = 0 to x0 = π
200

. The rates of convergence in L2 norm and the energy norm confirm
our error analysis.

In Tables 5 and 6, we put the interface x0 = 1 − π
300

near the left boundary. Let the Lamé
coefficients are (µ+, µ−) = (3, 2), (λ+, λ−) = (2, 1), and (µ+, µ−) = (3, 1), (λ+, λ−) = (2000, 1000),
respectively. The numerical results show that the IFE interpolation error and the IFE solution error
orders in L2 norm and the energy norm are optimal.
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Example 3. Ω is separated by an ellipse interface curve Γ into subdomains Ω+ = {(x, y)t :
x2 + 4y2 > r20} and Ω− = {(x, y)t : x2 + 4y2 < r20}. Let r0 = 0.2, the exact solution is

u (x, y)) =

(
u1 (x, y)
u2 (x, y)

)
=



(
u−
1 (x, y)

u−
2 (x, y)

)
=

(
1

λ−+2µ−

(
x2 + 4y2 − r20

)
1

µ−

(
x2 + 4y2 − r20

) )
in Ω−,(

u+
1 (x, y)

u+
2 (x, y)

)
=

(
1

λ++2µ+

(
x2 + 4y2 − r20

)
1

µ+

(
x2 + 4y2 − r20

) )
in Ω+.

Table 6. The interpolation errors and the IFE solution errors with x0 = 1− π
300

,
λ+ = 2000, λ− = 1000, µ+ = 3, µ− = 1, ν+ ≈ 0.4995, ν− ≈ 0.4993.

1
h

∥u− Ihu∥L2 order ∥u− Ihu∥h order

8 1.89e-003 9.12e-002

16 4.80e-004 1.973 4.58e-002 0.995

32 1.21e-004 1.985 2.30e-002 1.001

64 3.05e-005 1.990 1.16e-002 0.997

128 7.95e-006 1.942 5.84e-003 0.992
1
h

∥u− uh∥L2 order ∥u− uh∥h order

8 8.17e-001 1.36e+001

16 2.04e-001 2.000 6.82e-000 1.003

32 5.11e-002 2.000 3.42e-000 1.000

64 1.28e-002 2.001 1.71e-000 0.999

128 3.19e-003 2.000 8.58e-001 1.000

Table 7. The interpolation errors and the IFE solution errors with λ+ = 100, λ− = 1,
µ+ = 200, µ− = 2.

1
h

∥u− Ihu∥L2 order ∥u− Ihu∥h order

8 2.93e-002 6.34e-001

16 7.40e-003 1.985 3.22e-001 0.983

32 1.85e-003 1.999 1.61e-001 1.000

64 4.63e-004 1.998 8.08e-002 0.999

128 1.16e-004 1.999 4.05e-002 1.000
1
h

∥u− uh∥L2 order ∥u− uh∥h order

8 6.30e-002 1.10e-000

16 1.65e-002 1.933 5.57e-001 0.984

32 4.43e-003 1.897 2.81e-001 0.989

64 1.12e-003 1.978 1.41e-001 1.000

128 2.79e-004 2.012 7.05e-002 1.000
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Table 8. The interpolation errors and the IFE solution errors with λ+ = 20000,
λ− = 10000, µ+ = 20, µ− = 10, ν+ = ν− ≈ 0.4995.

1
h

∥u− Ihu∥L2 order ∥u− Ihu∥h order

8 2.15e-003 6.71e-002

16 5.27e-004 2.027 3.38e-002 0.993

32 1.31e-004 2.005 1.69e-002 1.002

64 3.27e-005 2.006 8.49e-003 1.000

128 8.16e-006 2.002 4.26e-003 0.999
1
h

∥u− uh∥L2 order ∥u− uh∥h order

8 2.71e-000 3.87e+001

16 7.31e-001 1.890 1.99e+001 0.956

32 1.87e-001 1.969 1.00e+001 0.990

64 4.77e-002 1.970 5.05e-000 0.989

128 1.22e-002 1.967 2.56e-000 0.986

Table 7 presents the numerical results for the case (λ+, λ−) = (100, 1), (µ+, µ−) = (200, 2). We
text nearly incompressible case in Table 8, where (λ+, λ−) = (20000, 10000), (µ+, µ−) = (20, 10),
the Poisson ratios in sub-domains are ν+ = ν− ≈ 0.4995. The numerical results indicate that the
convergence orders of the P1/CR IFE method in L2 norm and the energy norm are optimal, no
matter the material is compressible or almost incompressible.

6 Conclusion

In conclusion, a partially penalized IFE method for solving elasticity interface problems on triangular
unfitted-meshes was developed. The optimal error estimate of the IFE solution was given. The
numerical results also confirm the rate of convergence is optimal in L2 norm and the energy norm.
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