
Journal of Advances in Mathematics and Computer Science

34(6): 1-12, 2019; Article no.JAMCS.53783
ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Adopting Tolerance Regions in Environmental
Economics

Christos P. Kitsos1 and Thomas L. Toulias2∗

1Department of Informatics and Computer Engineering, University of West Attica, Athens, Greece.
2Department of Electrical and Electronics Engineering, University of West Attica, Athens, Greece.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the

final manuscript.

Article Information

DOI: 10.9734/JAMCS/2019/v34i630227
Editor(s):

(1) Dr. Metin Basarir, Professor, Department of Mathematics, Sakarya University, Turkey.
Reviewers:

(1) A. N. Chavan, Shivaji University, India.
(2) João Everthon da Silva Ribeiro, Universidade Federal da Paraíba, Brazil.

(3) Anton D. Murzin, Southern Federal University, Russian Federation.
Complete Peer review History: http://www.sdiarticle4.com/review-history/53783

Received: 28 October 2019
Accepted: 02 January 2020

Original Research Article Published: 11 January 2020

Abstract
Uncertainty often lies when there is limited knowledge about the process one has to follow regarding the
investigation of a real-world problem. In practice, uncertainty is related with the assumed estimation
model of the physical problem, and mainly concerns the involved parameters. A typical example
can be an Environmental Economics system. There are many model specifications that estimate the
so-called Benefit Area of such system. For the evaluation of the optimal level of pollution, we can
adopt the corresponding tolerance region, and hence we can refer to this optimal level via future
observations rather than some parameters estimation. Tolerance regions can be either classical or
expected tolerance regions. The associated (four) Benefit Areas can be evaluated through a proposed
tolerance region procedure, and not through the usual confidence interval/region approach. Therefore,
four possible optimal levels of pollution can be obtained, as well as the corresponding tolerance region
for the reduction pollution point.
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1 Introduction
Uncertainty is a key element for the description of physical problems under investigation, and the
easiest way to measure it is, through an information-theoretic approach, by the adoption and study
of certain measures of information; see [1], [2] and [3] among others. A typical example of physical
problems is the study of the Environment and, in particular, the Environmental Economics.

There are a number of model specifications that estimate, eventually, the Benefit Area, which is the area
covered by the intersection between the marginal abatement function (MAD) and the marginal damage
cost function (MD), restricted by the Cost or Benefits axis [4], [5]. As an example, research provides
evidence that the Relative Risk (RR) differentiates under the gender factor in [6], [7]. In this survey,
women seem to be more vulnerable to environmental disasters and climate change than men, mainly
due to their social role and responsibilities. Therefore, different approaches are needed to analyze
statistical parameters concerning the acquired environmental data; see [5] and [8] among others.

One question arising from the general study of these models is “what is the percentage of the future
observations that lie within a predefined interval/region with a given probability?”. Such a request
gives in fact the definition of the so-called tolerance region (TR), as it was defined by [9]. We believe that
the adoption and study of the TRs is essential in environmental problems, and in this research we shall
try to implement the corresponding TRs in an Environmental Economics context.

Uncertainty is hidden in Environmental Economics, either in the choice of the model or in other factors,
and have already been discussed in [4], [8], [10] and [11]. Initially, the aim is to investigate and to
produce relationships among the real-world events that we study so that the involved variance and
Relative Risk (RR) to be expressed and analyzed; see for example [12] among others. Environmental
Economics is an important field that adopts such relationships and provides food for thought regarding
Health and Economics.

In the theory of probability, the Borel Algebra on the set of real numbers, i.e. the algebra on which
the Borel measure is defined, plays an important role on the foundation of the probabilistic aspect of
a problem under investigation; the Environmental Pollution is that problem for this paper. That is
why briefly we state the definition: Let C be the collection of real intervals in R. The smallest σ-field
containing C is called the Borel σ-field. Any interval is a Borel set, and we can extent to regions
(intervals) of R. In principle, if T is a topological space and B is the smallest σ-field that contains all
the open sets, then B is called the Borel σ-field. Moreover the Borel algebra on real numbers is the
smallest σ-algebra on R that contains all the intervals. The probability space, defined through Measure
Theory, is used in Appendix I for a theoretical approach regarding invariance.

Most of the work devoted on this subject is related to a confidence interval approach [8] which offers a
solution towards the investigation of the involved uncertainty. The investigation of the future observations
as well as the level of probability in order a future observation to be considered accepted or not, has its
own importance which is equal if not greater than the important of some parameter estimations. This
leads us to the concept of the tolerance interval/region (TR); roughly put, the interval/region in which a
certain percentage of future observations lies with a given high probability. The above general idea of
TR is discussed in Section 2.

Interest is focused when the underlying model, with typical example being the General Linear Model
(GLM) remains invariant to linear (affine) transformations, [13]. The δ-expected tolerance region is
usually considered, which is the average TR, denoted with ATR(δ). The gain in information/knowledge
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is even more when we adopt the so-called expected TR which is asked to be at a certain probability
level δ ∈ (0, 1); see Section 3 for a brief discussion. We comment here that, in bibliography, it is
usually referred as the β-expectation tolerance region with the β notation omitted in this study (not
to be confused with the β parameter vector of a GL model).

In this paper, our interest is focused on the intersection point I(x0,k0) between the marginal abatement
function (MAD) and the marginal damage cost (DC) function, known as the optimal level of pollution
see [14]. The corresponding point x0, in the Damage Reduction axis, is known as the optimal level of
pollution reduction while the value k0 on the Cost axis is known as optimal cost. The area covered from
those curves (see Fig. 1) is known as the Benefit Area (BA). Regarding the optimal level of pollution,
we can evaluate the corresponding tolerance region, either the classical or the expected (invariant)
tolerance interval ATR(δ), and therefore we can obtain (from the intersection of the latter) four possible
optimal levels of pollution and the corresponding tolerance interval for the reduction pollution point, as
[5, 8] discussed for the confidence interval approach. The associated four Benefit Areas can be evaluated
via to the adopted TR procedure, rather than a confidence interval approach.

But to what “amount” of pollution we are referring? And and what are the pollutants’ future behavior?
It is known that the atmosphere influences the climate and, therefore, the knowledge of the pollution
is crucial, while the restrictions on the factors polluted the environment are also important. Typical
examples are the CO2 and CH4 factors, while CFC’s (not existed before 1938) with construction similar
to CH4, have a larger duration and destroy the ozon (O3) layer, as it is known since 1985. Some
researchers discussed different policies and taxation on SOX , NOX , CO2 etc., [14] and [15] while others
tackled the corresponding uncertainty problem, [11]. Moreover, the authors in [5] provided an extensive
discussion on considering uncertainty, either through a mathematical or statistical point of view, by
working on the theoretical identification of the Optimal Pollution Level, which was considered in [4]
and extended in [10], with the adoption of different models describing the marginal abatement cost
(MAC) and the marginal damage cost (MD), [14].

2 Tolerance Regions
Uncertainties in the functions of benefits and costs influence the policy design in a number of ways. In
principle, are heavily depending on the real problem we face; see [16] and [17]. The Environmental
investigation, even of the “local case”, is depending on the international environment [18].

Let Ω = Rn and A ⊆ B with B being the Borel field B = {
[a, b) ∈R2}

. Consider the set function
(Appendix I)

Q : Ω→A , Rn ∋ y= (y1, y2, . . . , yn)
Q7−→ Q(y1, y2, . . . , yn) ∈A . (2.1)

We are restricted to statistical tolerance regions (TR) since Ω = Rn and A is in B. Hence, there exist
two functions, say L = L(y) and U =U(y), such that

Q = [L, U), L <U . (2.2)

Wilks worked in [19] on a sample following a continuous distribution function (cdf) F, proved that (2.2),
with

L = L(y)=Y(k1), U =U(y)=Y(k1+k2), (2.3)
defines indeed a tolerance region, where Yi is the i-th ordered statistic. He also proved that

F(U)−F(L)= F
(
Y(k1+k2)

)−F
(
Y(k1)

)∼Beta(k2,n−k2 +1). (2.4)

The probability content of the tolerance region,denoted by Q =Q(y), is based on independent observations
with PrY , and is called the coverage C of the TR Q, i.e. C(Q) :=PrY

(
Q(y)

)
, or in a function form,

C : B → [0, 1], Q(y) C7−→ C
(
Q(y)

)=PrY
(
Q(y)

)
. (2.5)
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The statistical tolerance region is a δ-content tolerance region, CTR(δ), with probability γ if

Pr
{
PrY

(
Q(y)≥ δ

)}= γ ∈ [0, 1]. (2.6)

Recall the TR as considered above by [19]. Assuming k1 = r, k2 = n−2r+1 and r < (n+1)/2, it can then
be proved, [20], that

γ=Pr
{
F

(
Y(n−r+1)

)−F
(
Y(r)

)≥ δ
}
= 1− IBetaδ(n−2r+1,2r), (2.7)

where IBetaδ(p, q) denotes the incomplete beta distribution. We imposed one criterion to assure that,
on average, the coverage would be δ and thus, the δ-expected TR, δ−eTR, is then defined as,[

PrY
(
Q(y1, y2, . . . , yn)

)]= δ, (2.8)

see the pioneering work of [21] and [22] among others. Therefore, we create a region, a two-sided
tolerance interval. Notice that the TR is not unique; see the integral equation (2.9). It is then clear that
TR’s can be proved very practical in industry and not only [23].

Now, let us consider a future response z = (z1, z2, . . . , zn) and its corresponding tolerance region Q(z).
Then, the affine tolerance region ATR is a statistic Q(·) on Rn over the space of future responses, based
on the data such that

C
(
Q(y)

)
:=

∫
Q(y)

H(z|y)dz= δ, δ ∈ [0, 1]. (2.9)

Moreover, we are asking the average of the probability coverage of the tolerance region to be δ for the
future response, i.e.

θ

[
C

(
Q(y)

)]= δ, θ ∈Θ⊆Rn, (2.10)

and we are referring to it as ATR(δ). The density function H(z|y) in (2.9) is statistically well defined
(see Appendix II and called the prediction distribution of the future response z; see [24] and [22].

We emphasize here that in practice the “invariant”property, i.e. to remain invariant under affine trans-
formations, might not be applicable in all cases; see Appendix I for the main points of invariance.
Suppose, for example, that there is a source of pollution in a place M and suppose we transfer it in
a distance d and rotate it by an angle ϑ, in a new position M′. Although, theoretically, the TR of M
is equivalent to M′ and is invariant under the affine transformation, the profile of the pollution (and
hence the environmental analysis) might be completely different if M′ is located near a river or a city,
etc. This is an example where some mathematical concepts may not be always useful in practice.

The well-known 95% confidence interval µ̂±1.96σ̂, with µ̂ being the sample mean and σ̂ the sample
standard deviation may not necessarily include the 95% of the population, as it depends on the variance
of the estimates µ̂ and σ̂. Therefore, a tolerance region is bounding this variance by requesting a certain
percentage of the population (and not the parameters) to be included in tolerance interval.

The δ-expected TR for observations coming from the normal distribution can be evaluated due to the
following Theorem 2.1. For the GLM, Theorem 2.2 is the appropriate one, while for the invariant case,
Theorem 2.4 provides the corresponding ATR(δ). That is, we provide the tolerance regions Q0 as in
(2.11) for the classical TR, Q1 as in (2.16) for the simple linear model, and Q∗

1 as in (2.22) for the
invariant case of the simple linear model.

In practice there are usually less than 33 observations with the t-distribution adopted at (1−δ)/2 level
of significance, where δ being the δ-content of the tolerance region.
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Theorem 2.1. Let us assume the normality of the error variable ε coming from the standard normal
distribution N (0,1). Then, the 100(1−δ)% TR for a sample from the normal distribution, of the form

Q0 = [
ȳ−k s, ȳ+k s

)
. (2.11)

is the δ-expected region, with

ȳ= 1
n

∑
yi , s2 = 1

n−1
∑(

yi − ȳ
)2, k =

√
1+n−1 tn−1;(1−δ)/2, (2.12)

where tn−1;(1−δ)/2 being, as usual, the t-distribution with n−1 degrees of freedom, exceeding with probability
(1−δ)/2.

In principle, two are the main families of models: Quantitative and Qualitative models. Typical examples
for the former in Statistics are the General Linear Model (GLM) and the Regression Model, while for
the latter is the Design Model. We shall focus on the GLM. Consider the matrix equation

y=Xβ+ε (2.13)

where y ∈ Rn×1 is an observable random vector, X ∈ Rn×p is a matrix of fixed observable non-random
variables, β ∈Rp×1 is a vector of unobservable parameters defined in a parameter space Θ and ε ∈Rn×1 is
an unobservable random vector with mean [ε]= 0 and covariance matrix Cov(ε)=Σ. The only difference
with the Regression Model is that the input variables x forming the matrix X are random. The normality
assumption for the errors is imposed when inference is asked, and the well-known OLS (Ordinary Least
Squares) procedure is performed.

For the General Linear Model y = Xβ+ ε, the following holds [13, Th. 8.3.1-2]). In the following,
Theorem 2.2 provides the classical TR for the GLM.

Theorem 2.2. For the GLM as in (2.13), the interval Qp = [L, U) with

L = β̂
T x0 −kδσ̂ and U = β̂

T x0 +k′δσ̂, (2.14)

is a δ-tolerance interval at the point xT
0 = (

x1
0, x2

0, . . . , yp
0

)T with confidence coefficient 1−γ, i.e. contains
100(1−δ)% of the observations with confidence 1−γ, and

kδ =−K t1−γ;n−p;q, k′δ = K t1−γ;n−p;−q, K2 = xT
0
(
XT X

)−1x0, (2.15)

kδ,k′
δ
∈ R, where t1−γ;n−p;q denotes the upper 1−γ probability point of the non-central t-distribution

with n− p degrees of freedom (df) and non-centrality parameter q =−Zδ/K.

Notice that −t1−γ;n−p;q = tγ;n−p;−q. We also emphasize here that the evaluation of non-central t-
distribution needs special care.

Corollary 2.3. For the simple linear regression model y = β0 +β1 x+ ε = βTx+ ε, ε ∼ N
(
0,σ2)

, the
δ-tolerance interval with confidence 1−γ is

Q1 = [l, u)=
[
β̂0 + β̂1 x0 −kδ σ̂, β̂0 + β̂1 x0 +k′δσ̂

)
, (2.16)

with n− p = n−2, q =−Zδ/K, kδ, k′
δ

as in (2.15) and

K2 = 1
n + (x̄− x0)2

n∑
i=1

(xi − x̄)2
. (2.17)
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Now, to construct a δ-expectation affine tolerance region ATR(δ) for the affine GLM, the prediction
distribution is needed and the following holds; see [22] and Appendix II for a compact review and
notation, especially (5.14).

Theorem 2.4. Let the error variable ε follow the normal distribution with 0 mean and variance 1, i.e.

f (εi)dεi =
1p
2π

exp
{
− 1

2ε
2
i

}
dεi , i = 1,2, . . . , p. (2.18)

We also assume that the matrix X0 of the GLM as in (2.13) corresponds to the matrix of n′ future
responses. Then, for the central 100(1−δ)% normal distribution being sampled, the ellipsoidal region

Q∗
p =

{
y ∈Rn×1

/ (
y−XT

0 β̂
T)

S−1
(
y−XT

0 β̂
T)

≤ p
n− p Fn′,n−p;δ

}
, (2.19)

is the δ-expectation ATR(δ), i.e.

ATR(δ)=Q∗
p. (2.20)

When p = 1, i.e. when we are referring to the simple linear model, the matrix X0 is reduced to the vector
x0 and the following holds; see [25] for a detailed discussion.

Corollary 2.5. For the simple linear model

yi =β0 +β1 xi +εi , εi ∼N
(
0,σ2)

, i = 1,2, . . . ,n, (2.21)

the central δ-expectation invariant ATR(δ) at point x0 is Q∗
1 = [

L∗, U∗)
with

L∗ := β̂0 + β̂1 x0 −
k

(S−1
1 )1/2

, U∗ := β̂0 + β̂1 x0 +
k

(S−1
1 )1/2

, (2.22)

where β̂0 + β̂1 x0 = (1, x0) · (β̂0, β̂1)T =: xT
0 β̂, S−1

1 := 1−xT
0
(
XTX+xT

0 x0
)−1 x0, and

k = tn−p;δ/2p
n−2

(RSS)1/2, (2.23)

with p = 2 and RSS being the Residual Sum of Squares of the OLS model (2.21), while X := ((1,1, . . . ,1)T,
x) ∈Rn×2, x := (xi)T ∈Rn×1.

Therefore, the interval Q∗
1 = [

L∗, U∗)
as in (2.22) is the ATR(δ). For the simple linear model, the

corresponding TRs Q1 and Q∗
1 , as in (2.16) and (2.22) respectively, are the two candidates for the

invariant TR-s in order to evaluate Q1 or Q∗
1 , so that a certain percentage of the future observations

will lie, on average, within Q1 or Q∗
1 , with certain given probability.

3 Environmental Economics
In Environmental Economics, the marginal abatement cost (MAC) as well as the marginal damage cost
(MD) play an important role as the optimal pollution level occurs at certain point for which MAC = MD.
Although there is an uncertainty about the appropriate model choice for the approximation of MAC and
MC, their typical presentation is given in Fig. 1; see [10] and [11].
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Fig. 1. Graphical presentation of the theoretical optimal level of pollution

Notice that the area of the triangle ABI corresponds to the Benefit Area (BA), where the curves g = g(x)
and φ=φ(x) can be estimated with the OLS methodology; see [4]. For linear MAC= g(x), and adopting
regression technics, we can evaluate ĝ(x)= β̂0+β̂1 x as well as for MD=φ(x): φ̂(x)= α̂0+α̂1 x. Therefore,
the TR, either Q1 or Q∗

1 , can be evaluated for g(x) and φ(x) respectively, say Q1g or Q∗
1g and Q1φ or

Q∗
1φ. In Fig. 2 the TRs are presented together with the confidence intervals (CIs) for both MAC and

MD. The benefit area BA = (AIB) has now different options, as the intersection I may vary, depending
on the number of intersections of the associated TRs. In any case, however, it has to be of the form
I(x0,k0) with x0,k0 > 0. This presentation is another way to handle the BA and the existing underlying
uncertainty, in Environmental Economics.

We believe that there is a real need, especially in the field of Environmental Economics, to work with
the “future population” rather than the estimated measures of position or dispersion. The estimates
of the mean, median, mode, and the percentiles, as well as the variance of the population, might offer
information about the “center” and “scale” of the population, but does not provide information for the
behavior of the future population coming from the source under study. Fig. 2 provides evidence that,
as the TRs are larger than CIs, TRs might provide larger BAs and that could be a problem for the
researcher who has then to decide what is the appropriate choice. We are working on this decision
problem.

4 Discussion
We believe that, although a tolerance interval is less widely known than the confidence interval or
the prediction interval, it is more useful in practical problems. While confidence intervals bounds the
parameter estimates, such as mean, variance, proportion etc., tolerance interval bounds the range of
the data that includes a specific proportion of the population.
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Fig. 2. Graphical presentation of the estimated level of pollution

Example 4.1. Recall [4]. It has been evaluated , for quadratic MAC and linear MD, for the case of Greece
that,

MAC = β̂0 + β̂i x+ β̂2 x2 = 2.29+0.026x+0.0099x2,

MD = α̂0 + α̂1 x = 3.13+0.0341x.

The corresponding optimal pollution level is

x0 =− β̂1 − α̂1

2β̂2
= 42.12,

and the Benefit Area BA = 42.6. Based on the confidence interval (CI) for the coefficients of MAC and
MD, two more curves are obtained, depending on the lower and upper values of the coefficients’ CIs, say
MAC1, MAC2, and MD1, MD2; see the related curves of CIs in Fig. 2. In our case

MAC1 = 2.29+0.0235x+0.0022x2,

MAC2 = 2.33+0.295x+0.0169x2,

MD1 = 3.16+0.0159x,

MD2 = 4.33+0.841x.

It is clear that there are different intersections I(x0,k0), new x0 and another BA evaluation. For this
particular case, a more detailed statistical analysis is needed since the CIs of α̂1 includes zero. Now, for
the future observations, the estimates of the values of MAC and MD are obtained; see the corresponding
tolerance region (TR) curves in Fig. 2. The TRs depend on the given number of future observations, n′,
and on a non-central t-distribution, which makes the evaluation more complicated than the one for the
corresponding CIs. Moreover, the choice of the proportion δ for the δ-content, we usually chose δ= 0.90 or
0.95. We shall present soon the related TR evaluations.
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5 Conclusions
Tolerance intervals are related to prediction intervals, [26], while other researchers worked to create
bounds for the variance of the future response; see [22]. In practice, the future response is of great
importance as it is mainly a method of “building” a model to explore the future. Roughly speaking,
a prediction interval is an estimate confidence interval since future observations of some given data
(analyzed in principle with the regression analysis) will fall in that interval with an assigned probability
level. We emphasize that a prediction interval bounds only a single future sample. The superiority of
the tolerance interval lies in the fact that it concerns the entire population while ATR(δ) works on the
average of future possible samples. This is the main reason that tolerance intervals are, we believe,
more appropriate in practice. Notice also that due to this simple relation,

1<
p

n+1 ⇒ 1p
n
<

√
1+ 1

n ⇒ sp
n
< s

√
1+ 1

n ⇒ k sp
n
< k

√
1+ 1

n , (5.1)

with k > 0, the provided tolerance region Q0 is wider than the corresponding confidence interval. This
is a simple heuristic proof of the fact that TR > CI, either as length, area, or volume. Keep in mind that
TRs may be wider than CIs, however they are refer directly to the population rather than the sample
parameters; see also [27].
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Appendix I (Invariance)

Let
{
(Ω,A ,P), P ∈ P

}
be a probability space associated with points y ∈ Rn. Let g be any one-to-one

transformation of Ω onto itself. The collection of all sets gA with A ∈A , is a sigma-field A , and gP is
the probability measure on gA induced by g such that

gP(gA)= P(A), A ∈A . (5.2)

Any function φ on Ω generates a new function gφ such that

φ(x)= gφ(gx). (5.3)

Then (Ω,A ,P) ∼= (gΩ, gA , gP), i.e. g is an isomorphism in the sense that if B ⊆A then gB ⊆ gA , and
if φ is any A -P -integrable function on Ω, the gφ is gA -gP -integrable on gΩ and

gp(gφ | gA ) = gp(φ | B), (5.4)

(i.e. except on a gP -null set). If we now let G be a group with element g such that

gA =A , gP ∈P , with P ∈P , (5.5)

then the family {(Ω,A ,P), P ∈P } is said to be invariant under G.

The following lemma is essential for Section 3 and the analysis therein.

Lemma 5.1. [Kitsos (2011)] The set

G =
{

g =
(
Ip 0
hT λ

)
, Ip ∈Rp×p, λ> 0, hT = (hi) ∈Rp

}
, (5.6)

is a group of transformations.

Let the GLM to be of the form (2.13). Notice that the transpose is then

yT = βT XT +σεT, (5.7)

and therefore, it is easy to prove that it holds(
X
yT

)
=

(
Ip 0
βT σ

)(
XT

εT

)
, (5.8)

with 0T = (0,0, . . . ,0) ∈Rp, Ip ∈Rp×p denotes the identity matrix, i.e. Ip := diag(1,1, . . . ,1). If we let

Y :=
(
XT

y

)
, g :=

(
Ip 0
βT σ

)
, E :=

(
XT

εT

)
, (5.9)

then (5.8) forms an affine transformation with matrix g being an element g of a group of transformations,
say G, and hence (5.8) is of the form Y= gE. So we can have an affine transformation for E.

Appendix II

Let us consider the response yT = (y1, y2, . . . , yn)T and its corresponding tolerance region Q(y). Then,
the affine invariant tolerance region is a statistic Q(·) on Rn×1, and with the space of future responses
based on the data such that

Pr
(
Q(y1, y2, . . . , yn)

)= ∫
Q(.)

Pr(y | θ)dy, (5.10)
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with θ being an element or the parameter space Θ ⊆ Rn×1. For the δ-expectation affine invariant
equivalent tolerance region, it can be proved that is of the form

ATR(δ)=θ

[
Prθ

(
Q(y)

)]= ∫
Θ

 ∫
Q(·)

Pr(y|θ)dy

h∗ (θ | data) dθ= δ, (5.11)

with h∗(θ | data) being the structural distribution of parameters; see [24] and [22]. Under Fubini’s
theorem, and denoting

H(z|y)=
∫
Θ

PrΘ(z | θ)h∗(θ | z)dθ, θ ∈Θ⊆Rn×1, (5.12)

relation (5.11) is reduced to

ATR(δ) :=
∫
Q

H(z | y)dy= δ. (5.13)

The density function H(z|y) has been defined as the prediction distribution of the future response z [24].

The prediction distribution (5.12) for the affine GLM is

H(z|y)=
|S|−1/2Γ

(
n+n′−p

2

)
πn′/2Γ

( n−p
2

) ∣∣∣In + (
y−Xβ̂

)TS−1 (
y−Xβ̂

)∣∣∣− n+n′−p
2 dy, (5.14)

with β̂ being the usual OLS estimators for the parameter vector β, while the variance s2 and covariance
S are given below

S−1 = s−2(y)S−1
1 , with

∣∣∣S−1
1

∣∣∣= ∣∣XT∣∣∣∣∣XT +XT
0 X0

∣∣∣ , (5.15)

s2 = s2(y)= (
y−Xβ̂

)T (
y−Xβ̂

)
, β̂=

(
XT X

)−1
XTy, (5.16)

S−1
1 = In −X0

(
XTX+XT

0 X0
)−1

XT
0 , X0 ∈Rn′×p, (5.17)

for given n′ future responses; see for details [25] and [22]. To fit a linear model see [28] among others.
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