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Abstract 

 
Aim: Mixture experiment designs are essential tools that need to be determined prior to conducting any 

mixture experiment in any field of study. The primary goal of these types of experiments are optimization that 

is either maximizing the profit/produce or minimizing the cost of production.  

Study Design: Any researcher anticipating to do any research work on the mixture experiment will not evade 

to talk about the design that he or she is likely to use. The common of such designs being either Simplex 

Lattice Design (SLD) or Simplex Centroid Design (SCD).  

Methodology: The choice of such design is wholly based on the optimality criteria employed. The classical 

of these criteria include on D-Determinant criterion, A-Average variance criterion, E- Eigen value criterion 

and T- Trace optimality criterion usually denoted as D-, A-, E- T- criteria. They are also known as prominent 

criteria.  
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Results: This paper considered  four-factor components at order two. The penalized moment matrices 

obtained from the information matrices whose primary source was the design points gave the values of the 

criteria aforementioned. These values were ranked independently with the least average rank termed as the 

best design.  

Conclusion: The {4,4} Simplex Lattice Design had the lowest rank value of 1.0 as compared to the other 

designs. This design is therefore to be used in any research work considering four factors when only two of 

factors are to be employed. 

 

 

Keywords: Mixture experiment; optimization; design; simplex-lattice; simplex-centroid; optimality criteria; 

prominent; average rank value. 
 

1 Introduction 
 

Optimal designs are standard ways that are mathematically proven to be meeting certain minimal threshold that 

often times give unique solutions. They are essential as to compare to non-optimal designs in that they aid in 

familiarising with the experiment before the actual study is done. They provide also crucial information like 

probable cost of the research, the overall outline of the experiment, the factors to be encompassed in the 

experiment and the runs/plots thereof among others. Additionally, optimizing refers to the process of 

maximizing or minimising something depending with the output of interest. The common instance of optimizing 

is minimising the cost and maximizing the yield/profit [1,2]. 
 

A design is usually selected based on certain criterion. The common criteria that are used in optimization 

include; D-optimality, E-optimality, A- optimality, T- optimality, G-optimality, I-optimality, MV-optimality 

among others. (Ashish, 2002). 
 

Let X be 𝑛 ∗ 𝑝  matrix that is constructed to obtain the desired matrix. This indicates that to obtain the 

information matrix is given as XTX. Dividing information matrix by N yields  (
𝑋𝑇𝑋

𝑁
) which is moment matrix, 

where N is the total number of runs/plots and tend to equalize the design [3-6]. The information matrix is crucial 

since it provides essential properties pertaining the response of interest i.e., it has statistical properties. D-

optimality is taken to be the one that has the maximum or highest value of determinant or the minimum value of 

inverse of the information matrix [7,8]. To standardize and to remove outliers in a given design, D-Efficiency is 

usually, D-efficiency =   (
100

𝑁
)*|XTX|1/p, where N is the total number of runs, in a given experiment and p is the 

total number of parameters in a given model. A –optimality is the design that has maximum value of average-

variance in information matrix (or the minimum value of average variance of inverse of information matrix). 

Like the D optimality, it has to be standardized, thus A efficiency = 
100𝑝

𝑡𝑟𝑎𝑐𝑒[𝑁(𝑋′𝑋)−1]
. (Lawson, 2011). 

 

Criteria that are commonly in use include determinant (D-optimality), average-variance (A-optimality), Eigen 

value (E-optimality) and trace (T-optimality) criterion. These criteria are usually referred to as classical or 

prominent criteria. To obtain such values, according to Pukelsheim [9] we have the following; 
 

D-optimality= (det (XTX))1/p of which the minimum value takes 0. p is the number of parameters that tend to 

penalize the design 

A-optimality = (
1

𝑝
*trace (XTX)-1)-1 of which the minimal value is taken. Usually, it is -1 

E- Optimality = ⋋min (XTX). The minimum is usually −∞ 

T- optimality = 
1

𝑝
*(XTX), the minimum is 1. 

 

Optimal designs provide useful information depending on the interest of a given design. Some provide 

information about the model, prediction inside the lattice space, the general layout of the design and the 

probable number of runs that might be considered among others [10-12]. For a given moment matrix, say, M it 

is usually given as M = (
𝑋𝑇𝑋

𝑁
) , taking determinant i.e., |M| = (

|𝑋𝑇𝑋|

𝑁𝑝 ). There is a close relationship between 

moment matrix and variance-covariance matrix. D-optimality design maximizes |M| = (
|𝑋𝑇𝑋|

𝑁𝑝 )  and also 

maximizes trace of M, i.e., |M| = (
|𝑋𝑇𝑋|

𝑁
). Thus, moment matrix is a key player in the determination of the design 

based on optimality criteria [13]. 
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2 Methodology 
 

2.1 Useful equations in mixture experiment 
 

Mathematically speaking, suppose that are q constituents in the study then to get the ith constituent in the 

mixture represented as xi, is given by 
 

𝑋𝑖 ≥ 0, i = 1, 2, 3, … q                                                                                                                            (1) 
 

(For this study q = 4) 
 

The nonnegative constituents must sum to one as indicated in equation 2. 
 


=

q

i

Xi
1

 = 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 = 1                                     (2) 

 

The main objective of this research was to establish the best mixture design that will be employed in any four-

factor mixture experiment that will yield maximally holding all factors constant. 
 

Equation (2) above is very vital because all proportions that makes part of the mixture experiment will be 

restricted by it. Furthermore, it can represent single component that is a pure mixture or fractions of components 

under test all adding to one.  Scheffe [14]. 
 

In this study, let  𝑋1, 𝑋2, 𝑋3 and 𝑋4 represent component 1, component 2, component 3 and component 4 

respectively. 
 

2.2 The simplex lattice design 
 

A lattice may have a special correspondence to a specific polynomial equation. To support a polynomial model 

of degree m in q components over the simplex, the lattice, referred to as a {𝑞,𝑚} Simplex-Lattice Design, 

consists of points whose coordinates are well-defined by the following combinations of the component 

proportions: the proportions assumed by each component take the m + 1 equally spaced values from 0 to 1, that 

is, 
 

Xi = 0, 1/𝑚, 2/𝑚, 3/𝑚, …, 1                            (3) 
 

and the {q, m) simplex-lattice consists of all possible combinations (mixtures) of the components where the 

proportion(s) for each constituent are used [15]. 
 

In this research, four components were considered. This implies that the component system will be containing 

all the possible mixture in the entire factor space which is a tetrahedron. Its four vertices will be representing the 

pure mixture denoted by 𝑋𝑖 = 1, j = 0 for i, j = 1, 2, 3 and 4, i ≠ j. The edges represent blend between any two 

given constituents, say, 𝑋𝑖𝑗 , i < j. In addition, the internal central points of the simplex will be representing  the 

mixture of the four manures under consideration of which non is missing. 
 

In the simplex-lattice design, usually denoted as {𝑞,𝑚}, we can come up with a number of designs and design 

points that will be used as runs (plots) to give the response of interest. In this case, the maximum component is 

four, 𝑞 = 4. Therefore, we vary the value of 𝑚 to either 2, 3, or 4 so as to come up with 3 different  types of 

simplex-lattice design which eventually will have different experimental points as discussed in detailed as 

below. In the design {𝑞,𝑚}, 𝑚 does not take the value of one (1) because all other designs will always have to 

contain it. When 𝑚 = 1, this represents single-mixture experiment. 
 

2.2.1 Experimental points of {4, 2} simplex lattice design 
 

To obtain this design we let the value of 𝑚 to 2, 𝑚 = 2, in equation (3) above. This will result into three (3) 

equally spaced proportions of 0, 0.5 and 1. These proportions will be used to indicate the experimental points 
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within which response of interest  is to be determined at. Thus, {4, 2} SLD will be having 10 design points to be 

considered independently.  Among the 10 points four are pure mixtures while six are two component mixtures. 

The design is as shown below: 

 

Table 1. The layout of experimental points in {4, 2} Simplex-Lattice Design 

 

    {4, 2} design   

Experimental Points Mixture Type Components Observed Response 

    X1 X2 X3 X4   

1 Pure 1 0 0 0 Y1 

2 Pure 0 1 0 0 Y2 

3 Pure 0 0 1 0 Y3 

4 Pure 0 0 0 1 Y4 

5 Binary 0.5 0.5 0 0 Y12 

6 Binary 0.5 0 0.5 0 Y13 

7 Binary 0.5 0 0 0.5 Y14 

8 Binary 0 0.5 0.5 0 Y23 

9 Binary 0 0.5 0 0.5 Y24 

10 Binary 0 0 0.5 0.5  Y34 

 

2.2.2 Experimental points of {4, 3} simplex lattice design 

 

To come up with {4, 3} SLD, we let the value of 𝑚 =3. Using equation 3 above, we will have four points that 

are all equidistant from each other within the simplex factor space in the aforementioned tetrahedron. These 

points are 0, 0.33, 0.67 and 1. Fixing these design points will result into the following layout, which has four 

pure mixture, twelve double mixture and four triple mixture design points summing to 20 experimental points. 

Table 2 gives the experimental design points of {4, 3} SLD; 

 

Table 2. The layout of experimental points in {4, 3} Simplex-Lattice Design 

 

  {4, 3} design   

Experimental Points Components Observed Response 

  X1 X2 X3 X4   

1 1 0 0 0 Y1 

2 0 1 0 0 Y2 

3 0 0 1 0 Y3 

4 0 0 0 1 Y4 

5 0.33 0.67 0 0 Y12 

6 0.33 0 0.67 0 Y13 

7 0.33 0 0 0.67 Y14 

8 0 0.33 0.67 0 Y23 

9 0 0.33 0 0.67 Y24 

10 0 0 0.33 0.67 Y34 

11 0.67 0.33 0 0 Y12* 

12 0.67 0 0.33 0 Y13* 

13 0.67 0 0 0.33 Y14* 

14 0 0.67 0.33 0 Y23* 

15 0 0.67 0 0.33 Y24* 

16 0 0 0.67 0.33 Y34*  

17 0.33 0.33 0.33 0 Y123 

18 0.33 0.33 0 0.33 Y124 

19 0.33 0 0.33 0.33 Y134 

20 0 0.33 0.33 0.33 Y234 

* Implies the second time a particular set of components is mixed at a given proportion different from the first case 
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2.2.3 Experimental points of {4, 4} simplex lattice design 

 

Similarly, to come up with {4, 4} Simplex Lattice Design is also obtained using the same application as of the 

prior designs above. In this scenario, 𝑚 = 4, substituting the value of 𝑚 in the equation 3 above we will obtain 

five different particular points that are to be combined so as to come with the required design. These five points 

are 0, 0.25, 0.5, 0.75 and 1. Table 3 gives all the possible combination of components present summing up to 

unity when each one at a time is considered. The design will have 35 different experimental points (plots), 

which are autonomous. Out of the 35 plots, four (4) are of pure mixture, eighteen (18) are of double mixture 

component, twelve (12) are of triple mixture component and only one (1) is four-mixture component. 

 

Table 3. The layout of experimental points in {4, 4} simplex-lattice design 

 

  {4, 4} design   

Experimental Points Components Observed Response 

  X1 X2 X3 X4   

1 1 0 0 0 Y1 

2 0 1 0 0 Y2 

3 0 0 1 0 Y3 

4 0 0 0 1 Y4 

5 0.25 0.75 0 0 Y12 

6 0.25 0 0.75 0 Y13 

7 0.25 0 0 0.75 Y14 

8 0 0.25 0.75 0 Y23 

9 0 0.25 0 0.75 Y24 

10 0 0 0.25 0.75 Y34 

11 0.75 0.25 0 0 Y12* 

12 0.75 0 0.25 0 Y13* 

13 0.75 0 0 0.25 Y14* 

14 0 0.75 0.25 0 Y23* 

15 0 0.75 0 0.25 Y24* 

16 0 0 0.75 0.25 Y34*  

17 0.5 0.5 0 0 Y12** 

18 0.5 0 0.5 0 Y13** 

19 0.5 0 0 0.5 Y14** 

20 0 0.5 0.5 0 Y23** 

21 0 0.5 0 0.5 Y24** 

22 0 0 0.5 0.5 Y34** 

23 0.25 0.25 0.5 0 Y123 

24 0.25 0.25 0 0.5 Y124 

25 0.25 0 0.25 0.5 Y134 

26 0.25 0.5 0.25 0 Y123* 

27 0.25 0.5 0 0.25 Y124* 

28 0.25 0 0.5 0.25 Y134* 

29 0 0.25 0.25 0.5 Y234 

30 0 0.25 0.5 0.25 Y234* 

31 0.5 0.25 0.25 0 Y123** 

32 0.5 0.25 0 0.25 Y124** 

33 0.5 0 0.25 0.25 Y134** 

34 0 0.5 0.25 0.25 Y234** 

35 0.25 0.25 0.25 0.25 Y1234 
* Implies the second time yield of a particular set of components is mixed at a given proportion different from the first case 

while ** is its third appearance 

 

In summary, combining all the three types of simplex-lattices designs so far discussed above, we will have the 

following layout. This structure shows experimental points, type of mixture, the four components under 

consideration and the expected response. 
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From the summary Table 4, the total number of runs/plots to be looked at stands at 57. Out of which 4 are of 

pure mixture, 36 are of double-component experiment, 16 are of triple-component mixture and only 1 quinary 

i.e., contain all the four types of components, all at the same proportion equidistant from the centre of the 

tetrahedron. However, after final determination of the criteria, one and only one of the above designs will be 

used that meet the minimum threshold. 

 

Table 4. The layout of all experimental points in overall 4-factor component Simplex-Lattice Design 

 

    {4, 2} design {4, 3} design {4, 4} design   

Exp. 

Points 

 Type Components Components Components Obs. 

 Resp 

    X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4   

1 Pure 1 0 0 0 1 0 0 0 1 0 0 0 Y1 

2 Pure 0 1 0 0 0 1 0 0 0 1 0 0 Y2 

3 Pure 0 0 1 0 0 0 1 0 0 0 1 0 Y3 

4 Pure 0 0 0 1 0 0 0 1 0 0 0 1 Y4 

5 Binary 0.5 0.5 0 0 0.33 0.67 0 0 0.25 0.75 0 0 Y12 

6 Binary 0.5 0 0.5 0 0.33 0 0.67 0 0.25 0 0.75 0 Y13 

7 Binary 0.5 0 0 0.5 0.33 0 0 0.67 0.25 0 0 0.75 Y14 

8 Binary 0 0.5 0.5 0 0 0.33 0.67 0 0 0.25 0.75 0 Y23 

9 Binary 0 0.5 0 0.5 0 0.33 0 0.67 0 0.25 0 0.75 Y24 

10 Binary 0 0 0.5 0.5 0 0 0.33 0.67 0 0 0.25 0.75 Y34 

11 Binary 
    

0.67 0.33 0 0 0.75 0.25 0 0 Y12* 

12 Binary 
    

0.67 0 0.33 0 0.75 0 0.25 0 Y13* 

13 Binary 
    

0.67 0 0 0.33 0.75 0 0 0.25 Y14* 

14 Binary 
    

0 0.67 0.33 0 0 0.75 0.25 0 Y23* 

15 Binary 
    

0 0.67 0 0.33 0 0.75 0 0.25 Y24* 

16 Binary 
    

0 0 0.67 0.33 0 0 0.75 0.25 Y34*  

17 Binary 
        

0.5 0.5 0 0 Y12** 

18 Binary 
        

0.5 0 0.5 0 Y13** 

19 Binary 
        

0.5 0 0 0.5 Y14** 

20 Binary 
        

0 0.5 0.5 0 Y23** 

21 Binary 
        

0 0.5 0 0.5 Y24** 

22 Binary 
        

0 0 0.5 0.5 Y34** 

23 Ternary 
    

0.33 0.33 0.33 0 0.25 0.25 0.5 0 Y123 

24 Ternary 
    

0.33 0.33 0 0.33 0.25 0.25 0 0.5 Y124 

25 Ternary 
    

0.33 0 0.33 0.33 0.25 0 0.25 0.5 Y134 

26 Ternary 
        

0.25 0.5 0.25 0 Y123* 

27 Ternary 
        

0.25 0.5 0 0.25 Y124* 

28 Ternary 
        

0.25 0 0.5 0.25 Y134* 

29 Ternary 
    

0 0.33 0.33 0.33 0 0.25 0.25 0.5 Y234 

30 Ternary 
        

0 0.25 0.5 0.25 Y234* 

31 Ternary 
        

0.5 0.25 0.25 0 Y123** 

32 Ternary 
        

0.5 0.25 0 0.25 Y124** 

33 Ternary 
        

0.5 0 0.25 0.25 Y134** 

34 Ternary 
        

0 0.5 0.25 0.25 Y234** 

35 Quinary                 0.25 0.25 0.25 0.25 Y1234 
* Implies the second time yield of a particular set of components is mixed at a given proportion different from the first case 

while ** is its third appearance 

 

2.3 Experimental points of simplex-centroid design 
 

Considering a q-component simplex-centroid design, the numeral of distinct points is 2q - 1. 

 

These points correspond to q permutations of (1, 0, 0, . . ., 0) or q single-component blends, the (q
2) permutations 

of (½, ½, 0, ..., 0) or all binary mixtures, the (q
3|) permutations of (1/3, 1/3, 

1/3, 0, ..., 0), . . ., and so on, with finally 

the overall centroid point (1/q, 1/q, …, 1/q) or q-nary mixture. Cornel [15]. 
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From the understanding of the above explanation on how to obtain Simplex-Centroid Design, it can be seen that 

components to be contained in the design must always appear in equal proportions. The experimental points are 

all located within the simplex designs that are dimensionally (q-1).  At the autonomous experimental points in 

the simplex-centroid design, the response of interest will be collected and a polynomial equation modeled to 

explain the effects of each component type singly or in their combination.  In this research work, the all-out 

number of variables is 4. Hence an appropriate model that will explain the effect of single component, double-

component parameter, triple-component parameter and lastly one with all the four types of components 

considered. Just like the simplex-lattice design, the simplex-centroid will be having four component systems as 

its entire factor space which is also a tetrahedron. Table 5 illustrates the experimental points by use the centroid 

study design. 

 

The design gives a total of 15 experimental points out of which 4 are of single-component, 6 are of double-

component, 4 are of triple-component and 1 quinary-component, i.e., contains all the four types of components 

in equal proportions. 

 

Table 5. The layout of all experimental points in Simplex-Centroid Design 

 

    Simplex-Centroid Design 

 

Experimental Points Mixture Type Components Exp. Response 

    X1 X2 X3 X4   

1 Pure 1 0 0 0 Y1 

2 Pure 0 1 0 0 Y2 

3 Pure 0 0 1 0 Y3 

4 Pure 0 0 0 1 Y4 

5 Binary 0.5 0.5 0 0 Y12 

6 Binary 0.5 0 0.5 0 Y13 

7 Binary 0.5 0 0 0.5 Y14 

8 Binary 0 0.5 0.5 0 Y23 

9 Binary 0 0.5 0 0.5 Y24 

10 Binary 0 0 0.5 0.5 Y34 

11 Ternary 0.33 0.33 0.33 0 Y123 

12 Ternary 0.33 0.33 0 0.33 Y124 

13 Ternary 0.33 0 0.33 0.33 Y134 

14 Ternary 0 0.33 0.33 0.33 Y234 

15 Quinary (All) 0.25 0.25 0.25 0.25 Y1234 

 

3 Results and Discussion 
 

3.1 Designs 
 

Two main types of mixture experiment designs, simplex-lattice and simplex-centroid designs, were put into 

consideration in regard to their respective criteria values. There was a need to do these prior so as the best 

design was to be obtained and implemented for any mixture experiment study that has to put into consideration 

four components. 

 

3.1.1 The {4, 2} simplex-lattice design 

 

With the help of experimental points in Table 1, the following is the information matrix obtained from the 

resultant matrix i.e., M = XTX. The information matrix of {4, 2} Simplex-Lattice Design is given as bellow; 
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





































=

00.000.000.000.000.000.000.100.000.000.0

25..000.000.000.000.000.050.050.000.000.0

00.025.000.000.000.000.050.000.050.000.0

00.000.000.025.000.000.050.000.000.050.0

00.000.000.000.000.000.000.000.100.000.0

00.000.025.000.000.000.000.050.050.000.0

00.000.000.000.025.000.000.050.000.050.0

00.000.000.000.000.000.000.000.000.100.0

00.000.000.000.000.025.000.000.050.050.0

00.000.000.000.000.000.000.000.000.000.1

M

 
 

The moment matrix for this design given as N= M-1M/p, where p is the number of plots or runs is given below 

as indicated. Thus,  
 

N = 







































0063.00000.00000.00000.00000.00000.00125.00125.00000.00000.0

0000.00063.00000.00000.00000.00000.00125.00000.00125.00000.0

0000.00000.00063.00000.00000.00000.00000.00125.00125.00000.0

0000.00000.00000.00063.00000.00000.00125.00000.00000.00125.0

0000.00000.00000.00000.00063.00000.00000.00125.00000.00125.0

0000.00000.00000.00000.00000.00063.00000.00000.00125.00125..0

0125.00125.00000.00125.00000.00000.01750.00250.00250.00250.0

0125.00000.00125.00000.00125.00000.00250.01750.00250.00250.0

0000.00125.00125.00000.00000.00125.00250.00250.01750.00250.0

0000.00000.00000.00125.00125.00125.00250.00250.00250.01750.0

 

 

Thus, Determinant criterion, D-optimality =   ϕ0 (N) = (det(N))1/p = 5.960464e-18, where p is the number of 

parameters that tend to penalize the design. 

Average variance criterion, A-optimality = ϕ-1 (N) = (
1

𝑝
*trace (N)-1)-1 = 148  

Smallest Eigen value Criterion, E- Optimality = ϕ- (N) = ⋋min (N) = 0.002462692.  

T- Optimality = 
1

𝑝
* trace(N) = 0.073750. 

 

3.1.2 The {4, 3} simplex-lattice design  
 

Table 2 shows the experimental design points of {4, 3} Design that was used to come up with the following 

information matrix and its resultant moment matrix i.e., M = XTX. 

The information matrix of {4, 3} SLD is given as follows; 
 

 







































































=

0000.00000.00000.00000.00000.00000.00000.10000.00000.00000.0

2222.00000.00000.00000.00000.00000.06667.03333.00000.00000.0

0000.02222.00000.00000.00000.00000.06667.00000.03333.00000.0

0000.00000.00000.02222.00000.00000.06667.00000.00000.03333.0

2222.00000.00000.00000.00000.00000.03333.06667.00000.00000.0

1111.01111.01111.00000.00000.00000.03333.03333,03333.00000.0

1111.00000.00000.01111.01111.00000.03333.03333.00000.03333.0

0000.02222.00000.00000.00000.00000.03333.00000.06667.00000.0

0000.01111.00000.01111.00000.01111.03333.00000.03333.03333.0

0000.00000.00000.02222.00000.00000.03333.00000.00000.06667.0

0000.00000.00000.00000.00000.00000.00000.00000.10000.00000.0

0000.00000.02222.00000.00000.00000.00000.06667.03333.00000.0

0000.00000.00000.00000.02222.00000.00000.06667.00000.03333.0

0000.00000.02222.00000.00000.00000.00000.03333.06667.00000.0

0000.00000.01111.00000.01111.01111.00000.03333.03333.03333.0

0000.00000.00000.00000.02222.00000.00000.03333.00000.06667.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.10000.0

0000.00000.00000.00000.00000.02222.00000.00000.06667.03333.0

0000.00000.00000.00000.00000.02222.00000.00000.03333.06667.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.1

M
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Its respective moment matrix is given as follows below; that is N= M-1M/p, where p is the number of plots or 

runs. Hence,  
 







































=

0062.00006.00006.00006.00006.00000.00148.00148.00019.00019.0

0006.00062.00006.00006.00000.00006.00148.00019.00148.00019.0

0006.00006.00062.00000.00006.00006.00019.00148.00148.00019.0

0006.00006.00000.00062.00006.00006.00148.00019.00019.00148.0

0006.00000.00006.00006.00062.00006.00019.00148.00019.00148.0

0000.00006.00006.00006.00006.00062.00019.00019.00148.00148.0

0148.00148.00019.00148.00019.00019.01500.00333.00333.00333.0

0148.00019.00148.00019.00148.00019.00333.01500.00333.00333.0

0019.00148.00148.00019.00019.00148.00333.00333.01500.00333.0

0019.00019.00019.00148.00148.00148.00333.00333.00333.01500.0

N

 

 

From this moment matrix above, the following values for the optimality are obtained.  

D-optimality =   ϕ0 (N) = (det(N))1/p = 6.82364e-19 

Average variance criterion, A-optimality = ϕ-1 (N) = (
1

𝑝
*trace (N)-1)-1 = 94.41073 

Smallest Eigen value Criterion, E- Optimality = ϕ- (N) = ⋋min (N) = 0.001923614 

Trace criterion, T- Optimality = 
1

𝑝
* trace(N) = 0.0398148 

 

3.1.3 The {4, 4} simplex-lattice design 
 

From Table 3 showing the experimental design points of {4, 4} SLD, information matrix and its resultant 

moment matrix i.e., M = XTX is as shown below. 
 

The information matrix for this design is also given as: - 
 

N =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.7500 0.2500 0.0000 0.0000 0.1875 0.0000 0.0000 0.0000 0.0000 0.0000
0.5000 0.5000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000
0.2500 0.7500 0.0000 0.0000 0.1875 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.7500 0.0000 0.2500 0.0000 0.0000 0.1875 0.0000 0.0000 0.0000 0.0000
0.5000 0.2500 0.2500 0.0000 0.1250 0.1250 0.0000 0.0625 0.0000 0.0000
0.2500 0.5000 0.2500 0.0000 0.1250 0.0625 0.0000 0.1250 0.0000 0.0000
0.0000 0.7500 0.2500 0.0000 0.0000 0.0000 0.0000 0.1875 0.0000 0.0000
0.5000 0.0000 0.5000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.0000
0.2500 0.2500 0.5000 0.0000 0.0625 0.1250 0.0000 0.1250 0.0000 0.0000
0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000
0.2500 0.0000 0.7500 0.0000 0.0000 0.1875 0.0000 0.0000 0.0000 0.0000
0.0000 0.2500 0.7500 0.0000 0.0000 0.0000 0.0000 0.1875 0.0000 0.0000
0.0000 0.0000 1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.7500 0.0000 0.0000 0.2500 0.0000 0.0000 0.1875 0.0000 0.0000 0.0000
0.5000 0.2500 0.0000 0.2500 0.1250 0.0000 0.1250 0.0000 0.0625 0.0000
0.2500 0.5000 0.0000 0.2500 0.1250 0.0000 0.0625 0.0000 0.1250 0.0000
0.0000 0.7500 0.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.1875 0.0000
0.5000 0.0000 0.2500 0.2500 0.0000 0.1250 0.1250 0.0000 0.0000 0.0625
0.2500 0.2500 0.2500 0.2500 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
0.0000 0.5000 0.2500 0.2500 0.0000 0.0000 0.0000 0.1250 0.1250 0.0625
0.2500 0.0000 0.5000 0.2500 0.0000 0.1250 0.0625 0.0000 0.0000 0.1250
0.0000 0.2500 0.5000 0.2500 0.0000 0.0000 0.0000 0.1250 0.0625 0.1250
0.0000 0.0000 0.7500 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.1875
0.5000 0.0000 0.0000 0.5000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000
0.2500 0.2500 0.0000 0.5000 0.0625 0.0000 0.1250 0.0000 0.1250 0.0000
0.0000 0.5000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.2500 0.0000
0.2500 0.0000 0.2500 0.5000 0.0000 0.0625 0.1250 0.0000 0.0000 0.1250
0.0000 0.2500 0.2500 0.5000 0.0000 0.0000 0.0000 0.0625 0.1250 0.1250
0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500
0.2500 0.0000 0.0000 0.7500 0.0000 0.0000 0.1875 0.0000 0.0000 0.0000
0.0000 0.2500 0.0000 0.7500 0.0000 0.0000 0.0000 0.0000 0.1875 0.0000
0.0000 0.0000 0.2500 0.7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.1875
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
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The moment matrix for this design is given as below;  

 







































=

0059.00010.00010.00010.00010.00001.00156.00156.00031.00031.0

0010.00059.00010.00010.00001.00010.00156.00031.00156.00031.0

0010.00010.00059.00001.00010.00010.00031.00156.00156.00031.0

0010.00010.00001.00059.00010.00010.00156.00031.00031.00156.0

0010.00001.00010.00010.00059.00010.00031.00156.00031.00156.0

0001.00010.00010.00010.00010.00059.00031.00031.00156.00156.0

0156.00156.00031.00156.00031.00031.01375.00375.00375.00375.0

0156.00031.00156.00031.00156.00031.00375.01375.00375.00375.0

0031.00156.00156.00031.00031.00156.00375.00375.01375.00375.0

0031.00031.00031.00156.00156.00156.00375.00375.00375.01375.0

N

 
 

Similarly, as in the case of the above seen designs, the following values were obtained from this moment matrix 

of the {4, 4} SLD. They include, 

 

Determinant Criterion, D-optimality =   ϕ0 (N) = (det(N))1/p = 1.246503e-19 

Average variance criterion, A-optimality = ϕ-1 (N) = (
1

𝑝
*trace (N)-1)-1 = 66.57143 

Smallest Eigen value Criterion, E- Optimality = ϕ- (N) = ⋋min (N) = 0.001554355 

Trace criterion, T- Optimality = 
1

𝑝
*trace(N) = 0.016728 

 

3.1.4 The simplex-centroid design 

 

For simplex-centroid design, the components to be contained in the design must always appear in equal 

proportions. The experimental points are all located within the simplex designs that are dimensionally (q-1) 

spaced.  At the experimental points in the simplex-centroid design, the response of interest will be collected and 

a polynomial modeled to explain the effects of each component type singly or in their combination if the design 

is selected.  In this study, the maximum number of variables is 4. Hence fit model that will explain the effect of 

single component, double-component parameter, triple-component parameters and lastly one with all the four 

types of components. Just like the simplex-lattice design, the simplex-centroid will be having four component 

systems as its entire factor space which is also a tetrahedron. The information matrix for the simplex-centroid 

design of the four-component mixture design is given as below; 

 























































=

0625.00625.00625.00625.00625.00625.02500.02500.02500.02500.0

1089.01089.01089.00000.00000.00000.03300.03300.03300.00000.0

1089.00000.00000.01089.01089.00000.03300.03300.00000.03300.0

0000.01089.00000.01089.00000.01089.03300.00000.03300.03300.0

0000.00000.01089.00000.01089.01089.00000.03300.03300.03300.0

2500.00000.00000.00000.00000.00000.05000.05000.00000.00000.0

0000.02500.00000.00000.00000.00000.05000.00000.05000.00000.0

0000.00000.02500.00000.00000.00000.00000.05000.05000.00000.0

0000.00000.00000.02500.00000.00000.05000.00000.00000.05000.0

0000.00000.00000.00000.02500.00000.00000.05000.00000.05000.0

0000.00000.00000.00000.00000.02500.00000.00000.05000.05000.0

0000.00000.00000.00000.00000.00000.00000.10000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.10000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.10000.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.1

M
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The moment matrix of the simplex-centroid design is given as below, i.e., N= M-1M/p, 

 







































=

0060.00011.00011.00011.00011.00003.00142.00142.00034.00034.0

0011.00060.00011.00011.00003.00011.00142.00034.00142.00034.0

0011.00011.00060.00003.00011.00011.00034.00142.00142.00034.0

0011.00011.00003.00060.00011.00011.00142.00034.00034.00142.0

0011.00003.00011.00011.00060.00011.00034.00142.00034.00142.0

0003.00011.00011.00011.00011.00060.00034.00034.00142.00142.0

0142.00142.00034.00142.00034.00034.01426.00354.00354.00354.0

0142.00034.00142.00034.00142.00034.00354.01426.00354.00354.0

0034.00142.00142.00034.00034.00142.00354.00354.01426.00354.0

0034.00034.00034.00142.00142.00142.00354.00354.00354.01426.0

N
 

 

The criteria values for the Simplex-Centroid Design with the four factor components are given as; 

Determinant Criterion, D-optimality =   ϕ0 (N) = (det(N))1/p = 7.45E-19 

Average variance criterion, A-optimality = ϕ-1 (N) = (
1

𝑝
*trace (N)-1)-1 = 113.7022 

Smallest Eigen value Criterion, E- Optimality = ϕ- (N) = ⋋min (N) = 0.002907049 

Trace criterion, T- Optimality = 
1

𝑝
*(XTX) = 0.0404335. 

 

3.2 Selection of design 
 

From the output of the above designs in regard to their respective optimal values, each of the criterion is ranked 

independently. To obtain the design to be used, average rank is of key. The design that has the least average rank 

value shall be employed any research work which four factors at level two . The simplex- Lattice  Design {4, 4} 

had the smallest value of 1.00 on average of ranking as shown in the Table 6 below. Hence this design was 

selected to be used in this research work. 
 

Table 6. The Obtained Features of the Criterion and their respective ranking 

 

Criterion Simplex-Lattice Design Simplex-Centroid Design 

{4, 2} Design {4, 3} Design {4, 4} Design 

D 5.960464e-18 6.82364e-19 1.246503e-19 7.45E-19 

Rank 4 2 1 3 

A 148 94.41073 66.57143 113.7022 

Rank 4 2 1 3 

E 0.002462692 0.001923614 0.001554355 0.002907049 

Rank 3 2 1 4 

T 0.073750. 0.0398148 0.016728 0.0404335 

Rank 4 2 1 3 

Average Rank 3.75 2.00 1.00 3.25 
 

4 Conclusion 
 

The study began by comparing all the possible combination of Simplex Lattice Designs (SLD) and Simplex 

Centroid Design (SCD) with four factors under consideration. With the help of their respective standard 

matrices (information matrices) obtained from their respective experimental points, moments matrices were 

formed. From the resultant moment matrices; determinants, average variance, smallest Eigen values and trace 

values were obtained. These obtained features of the criterion were ranked accordingly with the smallest average 

rank value being the best. 
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According to D-, A-, E-, T-optimality criterion, {4.4} SLD had the least average value upon ranking of 1.0. This 

design met the minimum required threshold and is therefore recommended to be used in any four-factor 

component research work at level two. 
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