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Abstract

The unique expression patterns of circRNAs linked to the advancement and prognosis of

cancer underscore their considerable potential as valuable biomarkers. Repurposing exist-

ing drugs for new indications can significantly reduce the cost of cancer treatment. Compu-

tational prediction of circRNA-cancer and drug-cancer relationships is crucial for precise

cancer therapy. However, prior computational methods fail to analyze the interaction

between circRNAs, drugs, and cancer at the systematic level. It is essential to propose a

method that uncover more valuable information for achieving cancer-centered multi-associ-

ation prediction. In this paper, we present a novel computational method, AutoEdge-CCP,

to unveil cancer-associated circRNAs and drugs. We abstract the complex relationships

between circRNAs, drugs, and cancer into a multi-source heterogeneous network. In this

network, each molecule is represented by two types information, one is the intrinsic attribute

information of molecular features, and the other is the link information explicitly modeled by

autoGNN, which searches information from both intra-layer and inter-layer of message

passing neural network. The significant performance on multi-scenario applications and

case studies establishes AutoEdge-CCP as a potent and promising association prediction

tool.

Author summary

CircRNAs serve as crucial biomarkers and drug targets in cancer therapy. Predicting can-

cer-associated circRNAs and drugs contributes to uncover intricate molecular mecha-

nisms driving tumorigenesis, thus offering novel insights into cancer diagnosis,

treatment, and research. However, prevailing predictive methods often neglect the com-

prehensive interactions within circRNAs, drugs, and cancer, leading to an incomplete

understanding of their complex interplay. In response, we introduce AutoEdge-CCP, a

framework that models circRNA-cancer-drug interactions within a multi-source hetero-

geneous network. Each molecule combines intrinsic attribute information describing

molecular features with interaction information derived through autoGNN, revealing
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pivotal circRNAs and drugs associated with cancer. Experimental results across multi-sce-

nario attest to AutoEdge-CCP’s superior performance compared to competing methods,

particularly in predicting novel circRNAs and drugs associated with cancer. Additionally,

visualization of edge embeddings and case studies provide interpretable insights into the

prediction outcomes.

Introduction

Cancer is a profoundly intricate disease characterized by a diverse array of mutations occur-

ring within the genome, transcriptome, and proteome [1]. Most transcriptomic investigations

have primarily concentrated on the dynamic changes in linear transcripts during cancer initia-

tion and progression. Regrettably, these studies have often overlooked circular RNAs (cir-

cRNAs), that are formed by RNA polymerase II transcription and covalent back-splicing to

form a closed circular structure [2]. Differential analysis of circRNA expression profiles in var-

ious tumor tissues and adjacent normal tissues has revealed that some circRNAs are upregu-

lated or downregulated in tumors, thereby promoting or inhibiting tumor growth [3–6].

Therefore, research on the association between circRNAs and cancer assumes immense signif-

icance as it holds the potential to identify potential therapeutic targets and biomarkers for can-

cer, and conducting systematic gene drug development.

Drug research is crucial to cancer treatment, but it is expensive and lengthy process. It takes

about 10–15 years for a new drug to be discovered and applied clinically, costing between 0.8–

1.5 billion dollars [7–9]. Given these challenges, finding new indications from approved or

established clinical drugs has emerged as an effective strategy, a process called drug reposition-

ing, which can be achieved by identifying interactions between drugs and cancer [10–13].

Computational prediction of circRNA-cancer and drug-cancer associations is crucial for iden-

tifying potential RNA targets and candidate drugs that can guide subsequent wet-lab experi-

ments, thereby advancing cancer therapy.

Many computational models have been proposed to address the tasks of circRNA-disease

and drug-disease associations. These approaches can be roughly classified as network-centric

methods and machine learning-driven methods. For the former, a heterogeneous network is

constructed utilizing the relationships among different biomolecules. Subsequently, specific

algorithms are employed to forecast potential associations by leveraging the information

encoded within this network. For example, KATZHCDA [14] utilizes KATZ measure to iden-

tify disease-associated circRNA within the heterogeneous network that are integrated using

disease-disease similarities, circRNA-circRNA similarities and circRNA-disease associations.

CD-LNLP [15] adopted a linear neighborhood propagating labels strategy to identify the latent

disease-associated circRNA. RWR [16] is a circRNA-disease association predictor utilizing

restarted random walking method. BNNR [17] recovers the missing associations of the hetero-

geneous drug–disease network based on bounded nuclear norm regularization method. Xie

et al. integrated the weighted K nearest known neighbors and bipartite graph diffusion to iden-

tify novel drug-disease associations [18]. However, most network-centric methods are unable

to make association predictions for nodes without any interaction information. Machine

learning-driven methods primarily utilize supervised or unsupervised learning approaches to

mine deep features of the data and iteratively optimize model parameters to accurately predict

potential associations. Niu et al. incorporates the Markov model into graph neural network to

infer potential disease-associated circRNAs [19]. DMFCDA [20] and NMF-DR [21] are two

matrix factorization-based models that predict disease-associated circRNAs and drugs,
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respectively. LAGCN [22] and HNRD [23] are two predictors that utilize neural networks to

extract drug-disease features, incorporating attention mechanisms and neighbor information

to enhance information extraction. Despite the promising results obtained by previous meth-

ods, most of them only consider node features, and combine them in a simplistic concatenate

manner without explicitly modeling the complex information contained in the links between

nodes. Their neglect of the importance of edge embeddings learning limits the ability to fully

capture valuable information in network topology. Moreover, most prior methods tackle cir-

cRNA-disease and drug-disease tasks separately, lacking a systematic perspective to analyze

their interactions and consequently overlooking the constraints and coordination among mul-

tiple biomolecules.

Here, we present AutoEdge-CCP, a novel model that systematically predicts cancer-associ-

ated circRNAs and drugs by explicitly learning edge embedding. Firstly, we integrate the data

of circRNA-cancer, drug-cancer, and circRNA-drug associations to generate a multi-source

heterogeneous network and extract similarity attribute features based on the nodes in the net-

work. Next, the autoGNN with Explicit Link Information is employed to learn edge feature

representations in the multi-source heterogeneous network through the message passing and

readout phases. It introduces diverse intra-layer and inter-layer dimensions in the message

passing neural network and utilizes a robust search algorithm to ensure the effectiveness of the

searched Graph Neural Network (GNN) framework. Finally, AutoEdge-CCP leverages a learn-

ing-to-rank (LTR) framework to tackle the prediction of circRNA-cancer and drug-cancer

associations as ranking problems. By constructing ranked lists of associated cancers for each

query circRNA or drug, we facilitate more efficient analysis. Moreover, experimental results

across multiple scenarios demonstrate the superiority of AutoEdge-CCP compared to other

state-of-the-art methods. Furthermore, case studies validate the ability of AutoEdge-CCP to

detect potential circRNA-cancer and drug-cancer associations.

Results

Datasets

Three types of nodes and three types of associations were collected from public databases to

construct the heterogeneous network for predicting cancer-associated circRNAs or drugs. We

retrieved circRNA-cancer associations from the circR2Cancer database, a meticulously curated

resource with experimentally validated circRNA-cancer links. For drug-disease associations,

we obtained data from the CTD database, which includes both curated and inferred associa-

tions, sourced from published literature and curated drug-gene interactions, respectively. Fol-

lowing previous studies[24], the circRNA-drug sensitivity data was obtained from the circRic

database. We determined significant connections between circRNA and drug sensitivity using

a Wilcoxon test, establishing an association when FDR< 0.05, by analyzing the correlation

between circRNA expression and drug sensitivity. We excluded isolated nodes and foccused

solely on those nodes that have at least one edge in the multi-source heterogeneous network.

As a result, we collected a total of 614 circRNA-cancer associations, 1197 circRNA-drug asso-

ciations, and 523 drug-cancer associations, covering 407 circRNAs, 24 drugs, and 46 cancers,

respectively. For the tasks related to cancer-associated circRNAs and drug prediction, we con-

structed two imbalanced datasets, denoted as S1 and S2, respectively. These datasets encom-

passed experimentally validated circRNA-cancer associations and drug-cancer associations as

positive samples, while their corresponding unobserved pairs were considered as negative

samples. Detailed statistical information for both datasets and their application in circRNAs-

cancer and drug-cancer association tasks is shown in Table 1.
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Experimental setup for multi-scenario application

In this study, multi-scenario applications of AutoEdge-CCP algorithm can be divided into two

categories. In Scenario 1, our goal is to predict newly discovered circRNAs and drugs associ-

ated with cancer. These novel entities have entirely unknown connections with the candidate

set of cancers, labeled as "associated cancer ranking for novel queries". In Scenario 2, our goal

is to predict the missing associations between known circRNAs (or drugs) and candidate can-

cers, termed "associated cancer ranking for known queries".

For the first application scenario “associated cancer ranking for novel queries”, the distribu-

tion of dataset is shown in Fig 1A. There is no intersection of query ids between the training

set and the test set. Specifically, the experimental process is conducted using a five-fold cross-

validation approach. We assume the entire dataset comprises five circRNAs or drugs serving

as queries, with their corresponding query ids labeled as qid1 to qid5. Using Fig 1A as an illus-

tration, we divided the dataset into five non-overlapping subsets, each corresponding to a

unique query id. We selected the subset corresponding to qid 5 as the test set, and remaining

four subsets as the training set. This process is repeated five times, with the hold-out test set

being changed to a different subset in each trial. Subsequently, the performance measures

obtained from the five experimental runs were averaged to yield the final performance evalua-

tion of the model.

For the second application scenario “associated cancer ranking for known queries”, the dis-

tribution of dataset is shown in Fig 1B. Partial data with each query is composed into a test set

and the remain into a training set. During data split, all the dataset is randomly divided into

Table 1. Statistical information of the datasets. “#” represents the number.

Datasets #CircRNA #Drug #Cancer #Positive #Negative

S1 407 - 46 614 18108

S2 - 24 46 523 581

https://doi.org/10.1371/journal.pcbi.1011851.t001

Fig 1. Distribution of datasets in two application scenarios. (a) Scenario1: associated cancer ranking for novel

queries (b) Scenario2: associated cancer ranking for known queries.

https://doi.org/10.1371/journal.pcbi.1011851.g001
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five subsets. Similarly, the final experimental results are obtained using five-fold cross-

validation.

Parameter analysis

In order to comprehensively assess the performance and robustness of our proposed method,

we conducted an in-depth parameter analysis. By systematically exploring the influence of var-

ious rankers and their key parameters on the results, we aimed to elucidate the optimal param-

eter configurations that yield the most accurate and reliable predictions. The detailed

parameter settings of our implementation are provided in S1 Table.

To gain deeper insights into the impact of different rankers on the performance of the rank-

ing model for ranking cancer list to circRNA queries, we compared the parameters of rankers

0–7, where each ranker represents a different algorithm: 0 (MART), 1 (RankNet), 2 (Rank-

Boost), 3 (AdaRank), 4 (Coordinate Ascent), 6 (LambdaMART), and 7 (ListNet). As shown in

Table 2, the results demonstrated that the LambdaMART model significantly outperforms the

other models in terms of AUC and NDCG@10 matrics, indicating its suitability for the query

associated cancer ranking tasks.

The primary parameters of the LambdaMART algorithm include the Number of Trees,

Learning Rate, Number of Threshold Candidates, and Minimum Leaf Support. We leverage

the larger S1 dataset, containing more samples and queries than S2 dataset, to optimize these

parameters. By analyzing changes in the performance of AutoEdge-CCP on the S1 dataset, we

can fine-tune the aforementioned parameters to achieve an optimal combination. Moreover,

this study followed the principle of controlling variables, where other parameters were held

constant at their default values while evaluating a particular parameter. The final performance

results were obtained by averaging the performance scores from a five-fold cross-validation.

The impact of parameter fine-tuning on the performance of the AutoEdge-CCP method is

demonstrated in Fig 2. Notably, both the AUC and NDCG@10 metrics surpass 0.88, indicating

the effectiveness of the LambdaMART algorithm in sorting cancer-related lists. Following a

thorough comparison, we set the parameters of Number of Trees, Learning Rate, Number of

Threshold Candidates, and Minimum Leaf Support to 1000, 0.1, 256, and 1, respectively.

Other parameters, such as Number of leaves and estop, which have minimal impact on the

model performance are set to their default values. With this combination, the AutoEdge-CCP

method achieves better performance and generalization.

Performance of AutoEdge-CCP in multiple scenarios

In Scenario1 of predicting associated cancer ranking for novel queries, we compared Auto-

Edge-CCP with five methods for circRNA-disease association prediction, including three

machine learning-based methods, KATZHCDA [14], RWR [16], CDLNLP [15], and two deep

Table 2. Comparison of different rankers in LTR.

Ranker AUC NDCG@10

0: MART 0.9889 0.9524

1: RankNet 0.1438 0.5968

2: RankBoost 0.6757 0.9184

3: AdaRank 0.3176 0.7374

4: Coordinate Ascent 0.1299 0.8236

6: LambdaMART 0.9892 0.9568

7: ListNet 0.3136 0.7807

https://doi.org/10.1371/journal.pcbi.1011851.t002
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learning-based methods, DMFCDA [20] and GMNN2CD [19] (Table 3). In addition, Auto-

Edge-CCP was compared with five drug-disease association prediction methods, including

three machine learning-based methods, BNNR [17], NMFDR [21], BGMSDDA [18], and two

deep learning-based methods, LAGCN [22], HNRD [23] (Table 4).

From the comparisons we can see that: (1) AutoEdge-CCP achieves the best comprehensive

predictive performance in Scenario1, and obtaining a high-quality ranked list of associated

cancers. (2) AutoEdge-CCP exhibits superior performance in predicting circRNA-associated

cancer task within S1 dataset compared to the task of predicting drug-associated cancers in S2

dataset. This is consistent to the fact that AutoEdge-CCP, which is based on deep learning for

feature extraction, exhibits good scalability and adaptability on large datasets. As a result, it

can effectively utilize the information within the dataset to enhance the model’s generalization

ability.

We compared the ROCk values of different methods with a specific range (ROC10-45) in

Scenario1, as shown in Fig 3A. Given that our scenario is similar to information retrieval, it’s

Fig 2. The impact of parameters of LambdaMART model. (a), (b), (c), and (d) respectively represent the AUC and

NDCG@10 values obtained by AutoEdge-CCP under variations in the Number of Trees, Learning Rate, Number of

Threshold Candidates, and Minimum Leaf Support.

https://doi.org/10.1371/journal.pcbi.1011851.g002

Table 3. Performance comparison of AutoEdge-CCP and other methods in novel circRNA associated cancers prediction.

Methods AUC AUPR NDCG@10 NDCG MRR MAP

KATZHCDA 0.962 0.538 0.153 0.322 0.169 0.159

RWR 0.983 0.330 0.210 0.369 0.231 0.221

CDLNLP 0.482 0.018 0.154 0.450 0.324 0.154

DMFCDA 0.511 0.019 0.307 0.573 0.437 0.274

GMNN2CD 0.986 0.879 0.864 0.893 0.880 0.870

AutoEdge-CCP 0.989 0.952 0.956 0.962 0.962 0.952

https://doi.org/10.1371/journal.pcbi.1011851.t003

PLOS COMPUTATIONAL BIOLOGY Identification of cancer-associated CircRNAs and drugs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011851 January 30, 2024 6 / 20

https://doi.org/10.1371/journal.pcbi.1011851.g002
https://doi.org/10.1371/journal.pcbi.1011851.t003
https://doi.org/10.1371/journal.pcbi.1011851


often most worthwhile to pay attention to the top k recommended results. The ROCk metric is

precisely utilized to evaluate the ability of ranking top items. The area under the ROC curve

can be extended to the metric of ROCk, that is the AUC for top k items. The formula for this

metric is detailed in S2 Text. We can observe that AutoEdge-CCP is superior to all the com-

peting methods for cancer-associated circRNA predicting. For drug-cancer associations,

although some methods had higher ROCk values in the small range of k, AutoEdge-CCP out-

performed other methods in the range of ROC25-45, indicating the advantages on large-scale

datasets. Additionally, some methods show fluctuations or decreases, which can be explained

by the uneven sorting ability of the model that leads to misjudgments of some samples.

Fig 3B demonstrates an extension of Scenario 1, presenting overall ROC curves from the

perspective of 46 queried cancer types. The median values obtained for the circRNA-cancer

and drug-cancer prediction tasks are 0.9917 and 0.6228, respectively.

To evaluate the performance of AutoEdge-CCP in multiple scenarios, we additionally

applied it to predict associated cancer with known circRNAs or drugs in Scenario2. Fig 3C

illustrates the results of the 5-fold experiments, demonstrating overall high accuracy and rank-

ing capabilities in both known circRNAs (or drugs)-associated cancers.

Evaluations of edge features derived from autoGNN

To assess the influence of autoGNN model on AutoEdge-CCP, we compare it with four classic

graph embedding algorithms, including DeepWalk [25], node2vec [26], LINE [27], and SDNE

[28], as shown in Fig 4. This experiment specifically focused on the circRNA-associated can-

cers task within Scenario1, while keeping the rest of the AutoEdge-CCP algorithm unchanged

except embeddings model. The compared algorithms utilized default parameter settings.

As shown in Fig 4A and 4B, although other algorithms perform reasonably well on this sce-

nario, their performance still falls short compared to AutoGNN. Specifically, we observed that

AutoEdge-CCP achieved highest overall performance, improving the best-performing base-

line, Node2vec, in terms of AUC, AUPR, NDCD, NDCD@10, MRR, and MAP by 0.6%, 13%,

6.4%, 6.6%, 8.9%, and 8.8%, respectively. These results suggest that autoGNN is better suited

to mine the deep information contained in the associated data, improving the predictive per-

formance of the AutoEdge-CCP algorithm for cancer association tasks in multiple scenarios.

In addition, we conducted ablation analysis by removing node features or edge features. As

illustrated in Fig 4C, the results demonstrate that the model performs poorly when lacking

node or edge features, highlighting their indispensability. Additionally, a greater improvement

in performance with the incorporation of edge features, highlighting the effectiveness of

autoGNN. To further explore the models’ robustness, we conducted isolated feature engineer-

ing on the three models to extract node GIP attribute features, mitigating potential data leak-

age. It is evident that AutoEdge-CC’s performance, despite a modest decline, remains

commendable.

Table 4. Performance comparison of AutoEdge-CCP and other methods in novel drug associated cancers prediction.

Methods AUC AUPR NDCG@10 NDCG MRR MAP

BNNR 0.520 0.485 0.563 0.760 0.601 0.559

NMFDR 0.508 0.500 0.538 0.723 0.556 0.514

BGMSDDA 0.527 0.537 0.512 0.737 0.575 0.533

LAGCN 0.513 0.481 0.503 0.725 0.565 0.523

HNRD 0.481 0.467 0.463 0.563 0.800 0.466

AutoEdge-CCP 0.700 0.665 0.699 0.794 0.657 0.652

https://doi.org/10.1371/journal.pcbi.1011851.t004

PLOS COMPUTATIONAL BIOLOGY Identification of cancer-associated CircRNAs and drugs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011851 January 30, 2024 7 / 20

https://doi.org/10.1371/journal.pcbi.1011851.t004
https://doi.org/10.1371/journal.pcbi.1011851


Moreover, we illustrated those parameters searched by AutoEdge-CCP and the ablated

model, namely ‘no_nodefeature’, in Table 5. The AutoEdge-CCP model and the ablated

model are adaptive to different graph neural network architectures. For combining operation,

while the ablated model searched both sum operation for two layers, AutoEdge-CCP model

adapted two concatenate operations. For activation operation, the ablated model searched

Relu, Prelu functions in 1st layer and 2nd layer, respectively, while AutoEdge-CCP model

selected reverse activation function order. For interlayer aggregation, the ablated model

adapted none operation while AutoEdge-CCP concatenated two layers. Through the above

analysis, it can be proved that AutoEdge-CCP can search the operation space to compose dif-

ferent graph neural network architectures.

Visual explanations for AutoEdge-CCP

We conducted a visual interpretation experiment to validate the rationale behind AutoEdge-

CCP and observe its effectiveness in learning edge embeddings (i.e, He in Eq 5). Our objective

Fig 3. Performance of AutoEdge-CCP in multiple scenarios. (A) ROCk values comparison between AutoEdge-CCP

and alternative methods in Scenario1. (B) Overall ROCs for 46 cancers. Median AUROC was shown on the top of each

panel. Here, each gray line represents one cancer, the red line represents the median curve, and the light green part

represents the region between the 25th and 75th quantiles. (C) Box plot depicting the metric scores of AutoEdge-CCP

in Scenario 2. (A-C): left side presents circRNA-cancer association prediction, right side presents drug-cancer

association prediction.

https://doi.org/10.1371/journal.pcbi.1011851.g003
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was to understand the differences in the learning edge embeddings and their relevance to pre-

dicted results for circRNA-cancer and drug-cancer pairs. To achieve this, we computed Pear-

son correlation coefficients between different edge embeddings for these pairs. In the visual

experiment, we illustrated two circRNA-cancer pairs and randomly selected five unlabeled

(unobserved) pairs for each circRNA-cancer pair, while keeping the circRNA constant for

Fig 4. Analysis of the edge features derived from autoGNN. (A)-(B) Performance comparison under different graph

embedding algorithms. (C) Performance comparison between AutoEdge-CCP and models without node feature or edge feature.

https://doi.org/10.1371/journal.pcbi.1011851.g004

Table 5. Two adaptive GNN framework for autoGNN and the ablated model.

Operations AutoEdge-CCP no_nodefeature

Agg Max, Max Sum, Max

Combine Concat, Concat Sum, Sum

Activation Prelu, Relu Relu, Prelu

Layer Connect Skip_sum, stack Stack, Stack

Layer Aggregation Concat None

Pool Max Max

https://doi.org/10.1371/journal.pcbi.1011851.t005
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comparison. Similarly, we randomly chose two drugs, with each having three labeled drug-

cancer pairs and three unlabeled pairs. In Fig 5A, we can observe the following findings: (1)

For the same circRNA, the edge embeddings with the same label (highlighted in the yellow

rectangle) exhibit higher similarity compared to those with different labels (highlighted in the

green rectangle). (2) For unlabeled pairs, the edge embeddings of different circRNAs

(highlighted in the blue rectangle) exhibit lower similarity compared to the edge embeddings

of the same circRNA (highlighted in the green rectangle). Even the edge embeddings of labeled

pairs for different circRNAs (highlighted in the red rectangle) exhibit lower similarity than the

edge embeddings with different labels of the same circRNA (highlighted in the green rectan-

gle). These findings demonstrate that AutoEdge-CCP effectively captures the inherent differ-

ences between positive and negative samples, as well as among different circRNAs, thereby

significantly enhancing the model’s predictive capacity. Fig 5B showcases the similarity matri-

ces of edge embeddings for drug-cancer pairs, confirming the similar conclusions drawn from

Fig 5A. This further validates the generalization ability of AutoEdge-CCP in learning effective

link information.

Case study

To verify the capability of AutoEdge-CCP in prioritizing unknown associations, we carried

out case studies on queried circRNA (circ-RAD23B) and queried drug (NVP-AUY922) in

Scenario1.

For circRNA circ-RAD23B, as shown in Table 6, it can be observed that the top three can-

didate cancers (Esophageal cancer, Colorectal cancer, Non-Small Cell Lung Cancer) have been

supported experimentally validated in recently published literature. In specifically, circ-

RAD23B regulates PARP2 and AKT2 by sponging miR-5095 in esophageal cancer [29]. The

Fig 5. Heat maps of the similarity matrix for edge embedding. (a) and (b) represent the edge embedding similarity matrices learned by AutoEdge-CCP for

12 pairs of circRNA-cancer and drug-cancer, respectively. Note: * designates the labeled pairs, and the rest are unlabeled pairs. The abbreviations correspond to

the following full names: hsa_circ_0001733 (0001733), hsa_circ_0081161 (0081161), Lung Adenocarcinoma (LA); Head and Neck Squamous Cell Carcinoma

(HNSCC), Papillary Thyroid Cancer (PTC), Breast Cancer (BC), Liver Cancer (LC), Multiple Myeloma (MM), Thyroid Cancer (TC), Nasopharyngeal

Carcinoma (NPC), Acute Lymphoid Leukemia (ALL), Urinary Bladder Cancer (UBC), Prostatic Cancer (PC); Gastric Cancer (GC).

https://doi.org/10.1371/journal.pcbi.1011851.g005
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inhibition of circRAD23B has been demonstrated to impede the advancement of colorectal

cancer through the regulation of the miR-1205/TRIM44 axis [30]. Additionally, circ-RAD23B

has been found to impede the progression of non-small cell lung cancer by modulating the

miR-142-3p/MAP4K3 axis [31].

In Table 7, the AutoEdge-CCP analysis reveals the top five candidate cancers with the high-

est probability of association with the drug NVP-AUY922. Interestingly, the corresponding lit-

erature confirms four of these cancer types, namely gastric cancer, breast cancer, non-small

cell lung cancer, and colorectal cancer. For instance, NVP-AUY922, a potent inhibitor of heat

shock protein 90, has demonstrated significant activity against gastric cancer cells [32]. Based

on similar mechanism of action, NVP-AUY922 also has a potential growth inhibition effect in

breast cancer cell lines [33]. Additionally, in vitro studies have shown that NVP-AUY922 sig-

nificantly impedes the growth of all 41 tested non-small cell lung cancer cell lines with

IC50< 100 nmol/L [34]. The combination of NVP-AUY922 and TRAIL improves therapeutic

outcomes in Colorectal cancer patients [35]. In addition, the candidate cancer (esophageal

Squamous Cell Carcinoma) ranked in the top 5 associated with NVP-AUY922 was recorded in

the CTD database.

It is important to note that the CTD database source includes a combination of curated and

inferred data, which might not hold the same level of authoritative validation. As a result, we

intend to rigorously validate the predicted association through further investigation to ensure

the reliability and accuracy of AutoEdge-CCP. We employed autoDockTools for molecular

docking simulation experiments on the un-confirmed NVP-AUY922-Esophageal Squamous

Cell Carcinoma association. The results were visualized using Pymol and DS software, as

shown in Fig 6. We focused on three targets relevant to Esophageal Squamous Cell Carcinoma:

TGF-beta receptor type-2 (TGFBR2) [36], Cellular tumor antigen p53 (TP53) [37], and Poly-

unsaturated fatty acid lipoxygenase (ALOX12) [38]. Human protein targets were selected from

X-ray structures with resolutions above 2.5 Å, and their crystal structures (PDB IDs: 5E8Y,

4ZZJ, 3D3L) were retrieved from the Protein Data Bank (PDB) [39]. We obtained the docking

binding energies of these targets with NVP-AUY922, represented by negative values where

smaller negatives indicate higher efficacy. Additionally, we conducted molecular docking of

NVP-AUY922 with three Colorectal Cancer targets, comparing the results with those for

Esophageal Squamous Cell Carcinoma as outlined in Table 8. The results indicate that the

Table 6. Top-ranked candidate cancers related to circ-RAD23B predicted by AutoEdge-CCP.

CircRNA Rank Candidate Cancers Evidences

circ-RAD23B 1 Esophageal cancer 31208717

2 Colorectal cancer 33634427

3 Non-Small Cell Lung Cancer 35106926

4 Bladder Cancer NA

5 Esophageal Squamous Cell Carcinoma NA

https://doi.org/10.1371/journal.pcbi.1011851.t006

Table 7. Top-ranked candidate cancers related to NVP-AUY922 predicted by AutoEdge-CCP.

Drug Rank Candidate cancers Evidences

NVP-AUY922 1 Gastric cancer 21453385

2 Breast cancer 18430202

3 Non-small cell lung cancer 23493311

4 Colorectal cancer 25446253

5 Esophageal Squamous Cell Carcinoma CTD

https://doi.org/10.1371/journal.pcbi.1011851.t007
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molecular docking effectiveness of Esophageal Squamous Cell Carcinoma with NVP-AUY922

is comparable to the literature-supported interaction between Colorectal Cancer and

NVP-AUY922. In the case of 5E8Y, as illustrated in Fig 6B, we have observed the presence of

conventional hydrogen bond interactions between the compound and residues THR325,

HIS328, and ASN332. Moreover, a range of hydrophobic interactions has been identified.

These encompass residues like LYS277, CYS396, LEU305, VAL258, and ALA275 in alkyl inter-

actions, LEU386 in PI-sigma interactions, PHE327 in pi-pi stacked interactions, and ALA275,

LEU386, VAL250, and VAL258 in pi-stacked interactions. Additionally, Van der Waals inter-

actions occur between other amino acid residues and the small molecule.

Discussion

We proposed AutoEdge-CCP, a novel method based on autoGNN with Explicit Link Informa-

tion and LTR algorithm, to deal with the multi-association prediction of circRNA-cancer and

drug-cancer. Compared with prior methods, AutoEdge-CCP offers the following advantages:

(1) We combine isolated circRNA-cancer, drug-cancer, and drug-circRNA associations to cre-

ate multi-source heterogeneous networks. These networks enable systematic integration analy-

sis of circRNA-cancer and drug-cancer interactions, enhancing information complementarity.

(2) AutoGNN explicitly models the edge feature engineering across both intra-layer and inter-

layer dimensions of the message passing network, enabling comprehensive utilization of

molecular interaction information for improved link prediction performance. (3) The use of

an LTR algorithm transforms the association challenge into a ranking problem, allowing for a

comprehensive assessment of candidate cancer relationships and reducing false positives,

Fig 6. Visualization of NVP-AUY922 (PubChem CID: 135539077) and binding pockets. (A) The 3D representations of NVP-AUY922 with

the binding pockets of 5E8Y,4ZZJ and 3D3L. (B) The interaction maps of NVP-AUY922 with 5E8Y,4ZZJ and 3D3L.

https://doi.org/10.1371/journal.pcbi.1011851.g006
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especially at the top level. Thus, AutoEdge-CCP is highly practical for predicting cancer associ-

ations with novel circRNAs and drugs. (4) The visualization of high-order edge embeddings

and molecular docking experiments provides interpretable insights into the prediction out-

comes, instead of black-box results.

In our future work, we can strive for additional advancements in our model through the fol-

lowing avenues. (1) Employing constrained design principles, guided by knowledge or rules,

to enhance the intrinsic interpretability of the network structure (2) Delving into the diverse

relationship types of circRNA-cancer and drug-cancer, encompassing facets such as promo-

tion or inhibition, to facilitate more precise predictive capabilities.

Materials and methods

Problem formulation

In predicting cancer-associated circRNAs and drugs, the task is to train a model using a multi-

source heterogeneous network as input, generating an output that discerns the absence of

interactions between circRNAs (or drugs) and cancers. Specifically, the given heterogeneous

network is defined as graph G = (V,E), where v includes circRNA sets R = {r1,r2,. . .,rm}, drug

sets D = {d1,d2,. . .,dn}, and cancer sets C = {c1,c2,. . .,ck}, and E represents the edge sets. Our

objective is to find a model M that maps the joint feature representations of nodes ck and rm
(or nodes ck and dn) to an interaction probability score p�[0,1].

Overview of the AutoEdge-CCP framework

AutoEdge-CCP is proposed to deal with multitask: circRNA-cancer and drug-cancer associa-

tion prediction. Our approach framework, as shown in Fig 7, consists of four steps: multi-

source heterogeneous network construction, attribute feature representation, edge feature

representation, and query associated cancers ranking. Details are provided in the subsequent

sections.

Multi-source heterogeneous network construction

In this study, we conceptualize biomolecules as nodes and interactions between molecules as

edges, creating a multi-source heterogeneous network that effectively captures the intricate

relationships among various biomolecules [43–45]. In the network, each node is represented

by two types of information: intrinsic attributes information (such as circRNA functionality,

drug compound structure, and cancer semantics) and edge information that captures the rela-

tionships between nodes. We collected three types of nodes (circRNA, drugs, and cancer) and

diverse associated data, including circRNA-cancer associations, drug-cancer associations, and

circRNA-drug sensitivity associations, from multiple public databases. After conducting a

Table 8. The molecular binding energy of NVP-AUY922 with human target proteins associated with Esophageal Squamous Cell Carcinoma and Colorectal Cancer.

Cancer Target Binding energy (Kcal/mol)

Protein PBD ID Reference

Esophageal Squamous Cell Carcinoma TGF-beta receptor type-2 (TGFBR2) 5E8Y [36] -7.06

Cellular tumor antigen p53 (TP53) 4ZZJ [37] -5.85

Polyunsaturated fatty acid lipoxygenase (ALOX12) 3D3L [38] -4.87

Colorectal cancer Mothers against decapentaplegic homolog 4 (SMAD4) 1G88 [40] -5.99

Catenin beta-1 (CTNNB1) 1P22 [41] -4.59

DNA mismatch repair protein Mlh1 (MLH1) 6WBB [42] -4.47

https://doi.org/10.1371/journal.pcbi.1011851.t008
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series of data processing operations, including deduplication, standardization of identifiers,

and removal of non-human association data, we constructed a multi-source heterogeneous

network consisting of 477 nodes and 2334 edges. This network enhances prediction of missing

circRNA-cancer and drug-cancer associations from a systematic perspective by incorporating

diverse information.

Attribute feature representation

We calculate the cancer semantic similarity, circRNA functional similarity, and drugs chemical

structure similarity. These features were then fused with GIP kernel similarity respectively to obtain

attribute feature representations. The detailed calculation procedures are provided in S1 Text.

Edge feature representation

In this part, our model employs AutoGNN with Explicit Link Information [46] algorithm to

construct edge feature engineering of the multi-source heterogeneous network. The AutoGNN

model can automate the appropriate GNN architecture design for the given data [47] and

introduce edge embedding in an explicit way. The edge feature engineering consists of the

message passing phase and readout phase.

Message passing phase

Information is searched from the intra-layer message passing neural network (MPNNa) and

inter-layer message passing neural network (MPNNr) during the message passing process. To

encode the link information of the graph G, MPNNa utilizes a weak attention mechanism to

differentiate between self-type and neighbor-type edges based on a linear transformation

Fig 7. The framework of AutoEdge-CCP. There are four steps: (A). multi-source heterogeneous network construction.

Integrating association data encompassing circRNA, drugs, and cancer from the circRic, circR2Cancer, and CTD

databases. (B). Attribute feature representation. Extracting cancer, circRNA, and drug attribute features based on similarity

calculations. (C). Edge feature representation. AutoGNN explicitly modeling link information to obtain edge features. (D).

Query associated cancers ranking. The lambdaMART algorithm transforms the association problem into associated cancer

lists ranking for queried circRNA or drug.

https://doi.org/10.1371/journal.pcbi.1011851.g007
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Wk
φðuÞ, where φ(u)2{self,neigh}. The MPNNa is instantiates as:

Xkþ1

v ¼ ;AðW
k
φðuÞH

k
uÞ; 8u 2 NðvÞ ð1Þ

Hkþ1

v ¼ ;ACð;CðW
k
self H

k
v ;X

kþ1

v ÞÞ ð2Þ

Where N(v) represents the neighboring nodes of v, Hk
u and Hk

v denote the hidden representa-

tion of the u and v from the last layer, respectively. ;A governs the message aggregation process

from the neighborhoods of nodes. ;AC(�) defines the method of combining messages from a

node’s own with those from its neighboring nodes. ;C(�) denote the activate function. The can-

didate choices for the above three operations are defined as: ;A(�)2{sum,max,mean}, ;AC(�)2

{sum,concat}, and ;C(�)2{ReLU,PReLU}.

Next, MPNNr acquires information across layers through both layer-wise connectivity and

layer-wise aggregation. The layer-wise connectivity operation combines the output embedding Hk−1

of the k-th MPNNa with the output embedding Hk of current layer to from a new representation

Hk, which is then fed into the subsequent layer. The layer-wise connectivity operation is defined as:

Hk ¼

;conðHkÞ; ;con ¼ skip

;conðHk� 1;HkÞ; ;con ¼ sum

W;conðHk� 1;HkÞ; ;con ¼ concat

ð3Þ

8
><

>:

;con(�) denote the layer-wise connectivity function, where skip connectivity [48] in combination

with two others helps alleviate the over-smoothing problem [49], and W is the linear transformation

matrix. The layer-wise aggregation operation enables adaptive representation learning through

layer-by-layer aggregating representations generated by each layer of MGNNa, which is defined as

follows.

H ¼

;aggðHLÞ; ;agg ¼ skip

;agg ½H1k . . . kHL�; ;agg ¼ concat

;aggðH1; . . . ;HLÞ; ;agg ¼ max

ð4Þ

8
>><

>>:

Where ;agg(�) represents the layer aggregation function.

Readout phase

To obtain the final edge feature representation He from the set of nodes hidden embeddings in

G, we introduce the powerful pooling operation σ(�)2{max,concat,sum}, which is expressed as

follows:

He ¼ sðHvjv 2 GÞ ð5Þ

The autoGNN model employs the stochastic differentiable SNAS algorithm [50], rendering

search objectives for multiple operations differentiable through reparameterization. This

results in an efficient GNN framework achieved through adaptive searching. Assuming the

search space ε for operations is sampled from the distribution pw(ε) parameterized by struc-

tured parameters w, it is defined as follows:

εo ¼
expððlogwo � logð� logðUoÞÞÞ=tÞP

o0�Oexpððlogwo0 � logð� logðUo0 ÞÞÞ=tÞ
ð6Þ

Where o signifies a candidate operation, Uo~Uniform(0,1) represents uniform distribution
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sampling, and τ denotes the tolerance for the softmax activation function. This ensures that

the probability of sampling o (i.e., εo = 1) is directly proportional to its weight wo. Moreover,

the stochastic differentiable relaxation becomes unbiased upon convergence due to the one-

hot characteristic with limt!0 εo ¼ 1. The search problem can be formulated as follows:

max
w;y

Eε�pwðεÞ
½f ðε; y; GÞ� ð7Þ

Where f(�) denotes the performance of the designed AutoGNN model’s operation combina-

tion ε with weight θ on graph G, and E(�) is the expectation.

Query associated cancers ranking

LTR is a powerful technique that converts association problems into ranking problems in the

domain of information retrieval [51]. Essentially, LTR enables us to retrieve and rank relevant

documents from a candidate set based on a given query. The remarkable advantage of LTR lies

in its ability to eliminate the need for constructing negative samples, making it highly suitable

for handling data with imbalanced classes. Notably, LTR has demonstrated exceptional perfor-

mance across various areas in bioinformatics, such as: prediction miRNA-disease identifica-

tion [52], drug-target binding affinity prediction [53], protein structure and function [54], and

protein remote homology detection [55].

The LTR algorithm can be classified into three categories—pointwise, pairwise, and listwise

—distinguished by varying inputs and loss functions. The pointwise method focuses on the

absolute relevance between individual documents and queries, the pairwise method assesses

relative relevance by comparing the order of different documents, and the listwise method

optimizes the entire sequence directly for ranking evaluation metrics. However, the primary

focus of LTR is on sorting items rather than providing precise scoring outputs. Therefore, in

this paper, we employ LTR to provide relative scoring results.

In this study, we adopted listwise type of LambdaMART to reframe the prediction tasks of

circRNA-cancer and drug-cancer associations into circRNA or drug associated cancers rank-

ing tasks for model training. This process parallels information retrieval. In topic-document

retrieval, LambdaMART utilizes the joint features of each topic and its corresponding candi-

date document set as input. This algorithm then ranks the relevance of the candidate docu-

ment set for a specific topic based on the degree of correlation. For circRNA or drug

associated cancers ranking tasks, circRNAs or drugs serve as the queries, while multiple can-

cers serve as the candidates. LambdaMART’s goal is to prioritize associated cancers within the

ranking list for each query. The open source toolkit of LambdaMART can be accessed within

Ranklib (https://sourceforge.net/p/lemur/wiki/RankLib/).

The input and output data formats for this model are [label,qid,features] and [qid,did,score],

respectively. In the input data, where each row represents a circRNA (or drug)-cancer pair

sample, and the samples for the same query circRNA i (or drug j) have the same qid, the label
indicates the correlation degree of circRNA (or drug)-cancer pair, when label = 1, it indicates

that the sample has been experimentally verified to be associated; otherwise, label = 0, features
are the edge features of circRNA (or drug)-cancer pairs, obtained by Eq 5. In the output data,

where did is the unique id of the top cancer related to query qid, score denotes the predicted

score of the corresponding circRNA (or drug)-cancer pair calculated by this model.

Evaluation criteria

For the performance evaluation of AutoEdge-CCP, we employ a comprehensive set of mea-

sures for link prediction and ranking, including Receiver Operating Characteristic Curve

PLOS COMPUTATIONAL BIOLOGY Identification of cancer-associated CircRNAs and drugs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011851 January 30, 2024 16 / 20

https://sourceforge.net/p/lemur/wiki/RankLib/
https://doi.org/10.1371/journal.pcbi.1011851


(ROC) at k, the area under ROC (AUC), and Precision-Recall curve (AUPR), Normalized Dis-

counted Cumulative Gain (NDCG), Mean Reciprocal Rank (MRR), and Mean Average Preci-

sion (MAP), details are provided in S2 Text.
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